Unknown

Dataset Information

0

Proteome and transcriptome reveal the involvement of heat shock proteins and antioxidant system in thermotolerance of Clematis florida.


ABSTRACT: Clematis florida Thun (CfT) is an ornamental and medicinal plant. It is a cold resistant but heat sensitive species and deserves to be further investigated to improve its adaptability to heat stress. Exploring the molecular mechanism potential via an omic-analysis constitutes a promising approach towards improving heat tolerance of CfT. Two CfT lines, heat resistance (HR) and heat sensitive (HS), with differential thermotolerance capacities were used for the integrative analyses of proteomics and transcriptomes. Transcriptomes analysis showed that various pathways were significantly enriched including plant hormone signal transduction and carbon fixation pathways in prokaryotes. Proteomics study revealed the enrichment of some other pathways comprising antioxidant activity and carbohydrates metabolism. Based on combined transcriptomes and proteomics analyses and following heat stress treatment, a total of 1724 annotated genes were overlapped between both CfT lines. Particularly, 84 differential expressed genes (DEGs) were overlapped in both CfT lines. Fifteen out of these 84 genes were up-regulated solely for HR line (PS) but not for HS one (SG). This strongly suggests a potential prominent role for these genes in the thermotolerance process in PS line. We corroborate that two Hsps (Hsp18 and Hsp70) out of 20 detected proteins with higher expression levels in PS than in SG based on either global transcripts or proteins levels. According to the transcriptomes and proteomics analyses, 6 proteins and their corresponding genes were found to be significantly abundant in HR line (PS). Data are available via ProteomeXchange with identifier PXD018192. The expressions levels of these 6 genes were checked also for both CfT lines to evaluate their potential contributions in the heat tolerance process. Thus, their expression levels were approximately 2~4 times higher in HR than in HS line. We provided as well a representative schematic model to highlight the key genes involved in ROS scavenging and photorespiratory pathway in CfT. This model could be helpful also in understanding the mechanism of heat tolerance in CfT.

SUBMITTER: Jiang C 

PROVIDER: S-EPMC7264250 | biostudies-literature | 2020 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Proteome and transcriptome reveal the involvement of heat shock proteins and antioxidant system in thermotolerance of Clematis florida.

Jiang Changhua C   Bi Yuke Y   Mo Jianbin J   Zhang Ruyao R   Qu Mingnan M   Feng Shucheng S   Essemine Jemaa J  

Scientific reports 20200601 1


Clematis florida Thun (CfT) is an ornamental and medicinal plant. It is a cold resistant but heat sensitive species and deserves to be further investigated to improve its adaptability to heat stress. Exploring the molecular mechanism potential via an omic-analysis constitutes a promising approach towards improving heat tolerance of CfT. Two CfT lines, heat resistance (HR) and heat sensitive (HS), with differential thermotolerance capacities were used for the integrative analyses of proteomics an  ...[more]

Similar Datasets

| PRJNA554549 | ENA
| PRJNA1184364 | ENA
| PRJNA554727 | ENA
| PRJNA554544 | ENA
| PRJNA554550 | ENA
| PRJNA554559 | ENA
| PRJNA1095715 | ENA
| S-EPMC7998627 | biostudies-literature
| S-EPMC7268409 | biostudies-literature
| S-EPMC3583805 | biostudies-other