Project description:To investigate the respiratory effects of suvorexant, an orexin receptor antagonist for treating insomnia, in patients with obstructive sleep apnea (OSA).This was a randomized, double-blind, placebo-controlled, 2-period (4 days per period), crossover, sleep laboratory study. Twenty-six patients aged 18-65 years with mild (apnea-hypopnea index [AHI] ? 5 and < 15) to moderate (AHI ? 15 and < 30) OSA were randomized to receive suvorexant 40 mg or placebo in period-1 and then crossed over to the other treatment in period-2. Breathing during sleep was measured by AHI (primary endpoint) and oxygen saturation assessed by pulse oximetry (SpO2, secondary endpoint). The study was powered to rule out a mean increase in AHI between suvorexant and placebo of 5 or greater on Day 4.There was a small increase in mean AHI (2.66) in OSA patients after multiple doses of suvorexant relative to placebo, with the upper 90% CI bound slightly exceeding 5.00 (0.22, 5.09). No increase in mean AHI was observed after a single dose of suvorexant versus placebo (mean difference = -0.47 [-3.20, 2.26]), and there was no treatment effect on mean SpO2 during total sleep time after single or multiple doses (Day 1: mean difference = -0.04 [-0.49, 0.42]; Day 4: mean difference = -0.06 [-0.45, 0.33]). There was inter- and intra-individual variability in suvorexant respiratory effects.Suvorexant 40 mg, twice the 20 mg maximum recommended dose for treating insomnia in the USA and Japan, does not appear to have clinically important respiratory effects during sleep in patients with mild to moderate OSA as assessed by mean AHI and SpO2. Due to inter- and intra-individual variability in respiratory effects, suvorexant should be used with caution in patients with compromised respiratory function, and at the lowest effective dose.clinicaltrials.gov, NCT01300455.
Project description:Hypothalamic hypocretin (orexin) peptides mediate arousal, attention, and reward processing. Fibers containing orexins project to brain structures that govern motivated behavior, including the ventral tegmental area (VTA). A number of psychiatric conditions, including attention deficit hyperactivity disorder (ADHD) and substance use disorders, are characterized by deficits in impulse control, however the relationship between orexin and impulsive behavior is incompletely characterized. The effects of systemic or centrally administered orexin receptor (OXR) antagonists on measures of impulsive-like behavior in rats were evaluated using the five-choice serial reaction time task (5-CSRTT) and delay discounting procedures. These paradigms were also used to test the capacity of OXR antagonists to attenuate acute cocaine-evoked impulsivity. Finally, immunohistochemistry and calcium imaging were used to assess potential cellular mechanisms by which OXR blockade may influence motor impulsivity. Suvorexant, a dual (OX1/2R) orexin receptor antagonist, reduced cocaine-evoked premature responses in 5-CSRTT when administered systemically or directly into VTA. Neither suvorexant nor OX1R- or OX2R-selective compounds (SB334867 or TCS-OX2-29, respectively) altered delay discounting. Finally, suvorexant did not alter Fos-immunoreactivity within tyrosine hydroxylase-immunolabeled neurons of VTA, but did attenuate cocaine- and orexin-induced increases in calcium transient amplitude within neurons of VTA. Results from the present studies suggest potential therapeutic utility of OXR antagonists in reducing psychostimulant-induced motor impulsivity. These findings also support the view that orexin transmission is closely involved in executive function in normal and pathological conditions.
Project description:Study objectivesThe safety profile of the dual orexin receptor antagonists (DORAs) are currently unknown with regard to nocturnal responsivity among people with insomnia. We compared the auditory awakening thresholds (AATs) of the DORA suvorexant (10 and 20 mg) versus placebo in 12 individuals with DSM-5 insomnia.MethodsThe study used a double-blind, placebo-controlled, three-way crossover design. Participants were randomly assigned to a treatment sequence that included placebo, suvorexant 10 mg, and suvorexant 20 mg. At the time of maximum drug concentration, auditory tones were played during stable stage N2 sleep. Tones increased by 5-decibel (db) increments until the participant awakened. The db at awakening was recorded as the AAT and compared between conditions. The proportion of awakenings higher than 85 db was also compared between conditions. Finally, sensitivity analyses were also conducted using surrounding thresholds (80 db and 90 db).ResultsThe mean AAT did not differ significantly between either dose of suvorexant compared to placebo. Moreover, the proportions of individuals who remained asleep at the AAT 85 db cutoff did not differ across conditions. In addition, wake after sleep onset decreased and total sleep time increased in the suvorexant 20 mg condition compared to placebo.ConclusionsSuvorexant (10 and 20 mg) preserved the ability to respond to nocturnal stimuli, whereas the 20-mg dose improved the sleep of people with insomnia. This suggests that DORAs such as suvorexant can effectively treat insomnia while allowing patients to awaken to nocturnal stimuli in the environment.Clinical trial registrationRegistry: ClinicalTrials.gov; Title: A Phase IV 3-Way Double-blind, Randomized, Crossover Study to Compare the Awakening Threshold Effects (Responsivity) of Belsomra 10 mg and 20 mg to Placebo in Non-elderly Insomniacs; Identifier NCT03312517; URL: https://clinicaltrials.gov/ct2/show/NCT03312517.CitationDrake CL, Kalmbach DA, Cheng P, Roth T, Tran KM, Cuamatzi-Castelan A, Atkinson R, SinghM, Tonnu CV, Fellman-Couture C. Can the orexin antagonist suvorexant preserve the ability to awaken to auditory stimuli while improving sleep? J Clin Sleep Med. 2019;15(9):1285-1291.
Project description:Study objectivesSuvorexant (MK-4305) is an orexin receptor antagonist being developed for the treatment of insomnia. This report describes the effects of nighttime administration of suvorexant on polysomnography (PSG) sleep parameters in healthy young men.DesignRandomized, double-blind, placebo-controlled, 4-period crossover PSG study, followed by an additional 5(th) period to assess pharmacokinetics.SettingSleep laboratory.ParticipantsHealthy young men between 18 and 45 years of age (22 enrolled, 19 completed).InterventionsPeriods 1-4: suvorexant (10 mg, 50 mg, or 100 mg) or placebo 1 h before nighttime PSG recording. Period 5: suvorexant 10 mg, 50 mg, or 100 mg.Measurements and resultsIn Periods 1-4, overnight sleep parameters were recorded by PSG and next-morning residual effects were assessed by psychomotor performance tests and subjective assessments. Statistically significant sleep-promoting effects were observed with all doses of suvorexant compared to placebo. Suvorexant 50 mg and 100 mg significantly decreased latency to persistent sleep and wake after sleep onset time, and increased sleep efficiency. Suvorexant 10 mg significantly decreased wake after sleep onset time. There were no statistically significant effects of suvorexant on EEG frequency bands including delta (slow wave) activity based on power spectral analysis. Suvorexant was well tolerated. There was no evidence of next-day residual effects for suvorexant 10 mg. Suvorexant 50 mg statistically significantly reduced subjective alertness, and suvorexant 100 mg significantly increased reaction time and reduced subjective alertness. There were no statistically significant effects of any suvorexant dose on digit symbol substitution test performance. In Period 5, plasma samples of suvorexant were collected for pharmacokinetic evaluation. The median T(max) was 3 hours and apparent terminal t(½) was 9-13 hours.ConclusionsIn healthy young men without sleep disorders, suvorexant promoted sleep with some evidence of residual effects at the highest doses.
Project description:BackgroundLemborexant (LEM) is a dual orexin receptor antagonist approved for the treatment of insomnia in adults in multiple countries including the the United States, Japan, Canada, Australia and several Asian countries.ProceduresThis was a randomized, single-dose, single-center, double-blind, active-control, 6-way crossover study to evaluate LEM abuse potential. The study assessed oral doses of LEM 10 mg (LEM10), 20 mg (LEM20), and 30 mg (LEM30) compared with placebo (PBO), zolpidem (ZOL) immediate release 30 mg, and suvorexant (SUV) 40 mg. Subjects were healthy, nondependent, recreational sedative users able to discriminate/like the effects of both SUV and ZOL from PBO during a qualification phase.ResultsAbuse potential endpoints were analyzed in qualified subjects who received and completed all treatments (n = 32). On the "at this moment" drug-liking visual analog scale (VAS), mean maximum (peak) effect (primary endpoint) values were 78.4, 80.5, and 83.6 for LEM10, LEM20, and LEM30, respectively, which were all significantly greater than PBO (57.8; all P > 0.05) but not different from SUV (76.1) or ZOL (78.3). Similarly, for secondary endpoints overall drug-liking VAS and take-drug-again VAS, mean maximum (peak) effect values for all LEM doses were significantly greater than PBO ( P > 0.05) but not different compared with ZOL or SUV.ConclusionsFor all doses, LEM demonstrated abuse potential versus PBO and appeared to have a similar abuse potential profile to ZOL and SUV in this study population. Lemborexant was well tolerated. Lemborexant has been placed in Schedule IV, the same drug schedule as ZOL and SUV.
Project description:Purpose/backgroundAs part of a human abuse potential (HAP) study of lemborexant (LEM), the effects of therapeutic (LEM 10 mg), and supratherapeutic doses of LEM 20 mg and LEM 30 mg on cognition and psychomotor performance were compared with placebo (PBO) and supratherapeutic doses of zolpidem (ZOL) 30 mg and suvorexant (SUV) 40 mg. Subjects (n = 32) were healthy, nondependent, recreational sedative users able to discriminate the effects of both SUV and ZOL from PBO on subjective drug measures.Methods/proceduresThe human abuse potential study was a single-dose, randomized, double-blind, PBO-controlled, 6-way crossover study. Eligible subjects admitted to the treatment phase completed the choice reaction test (CRT) and divided attention test. The CRT included measurements of recognition reaction time (RRT) and motor reaction time.Findings/resultsRecognition reaction time and mean maximum change from baseline (CFB max ) scores were significantly increased (slower performance) versus PBO for all LEM doses (all P < 0.001), ZOL ( P < 0.001), and SUV ( P = 0.004), and LEM (all doses) was not statistically different from ZOL or SUV. Motor reaction time and mean CFB max versus PBO were significantly increased for all LEM doses (all P < 0.001), and ZOL ( P < 0.001) and SUV ( P < 0.001). All LEM doses showed significantly decreased (better performance) mean CFB max versus ZOL (all P < 0.001), but not SUV. Notably, all cognitive effects in the CRT and divided attention test were limited to the main treatment phase (up to 8 hours postdose).Implications/conclusionsAll active doses of LEM, ZOL, and SUV generally increased reaction time and reduced divided attention capabilities versus PBO. However, at therapeutic/supratherapeutic doses, LEM led to significantly less cognitive impairment than supratherapeutic doses of ZOL in some measures.
Project description:Orexins ('hypocretins') are peptides produced by neurons of the hypothalamus that project to structures implicated in reward and emotion processing. Converging evidence demonstrates functional roles of orexin signaling in arousal, sleep/wakefulness and motivated behaviors for natural and drug rewards. Suvorexant, a dual orexin receptor antagonist, recently received approval from the US Food and Drug Administration to treat insomnia. In Experiment 1, rats self-administered cocaine under a progressive-ratio schedule of reinforcement and the effects of suvorexant on motivation to self-administer cocaine were measured. In Experiment 2, the effects of suvorexant on cocaine reward were assessed by using a place conditioning paradigm, and 50-kHz ultrasonic vocalizations were also recorded to track changes in hedonic reactivity to cocaine. To rule out potentially confounding effects of suvorexant-induced somnolence, locomotor activity was also measured. In Experiment 3, the effects of suvorexant on cocaine-evoked elevations in ventral striatal dopamine were examined. Data reveal that suvorexant (i) reduced the number of cocaine infusions earned during progressive-ratio self-administration; (ii) attenuated initial positive hedonic reactivity to cocaine and prevented cocaine place preference; (iii) did not affect cocaine-induced hyperlocomotion and (iv) reduced cocaine-induced elevations in extracellular ventral striatal dopamine. The present study examined the therapeutic potential of suvorexant in rodent models of cocaine use disorder. These results contribute toward a growing literature supporting therapeutic roles of orexin receptor antagonists in treating substance use disorders.
Project description:IntroductionSleep disruption is a characteristic of Alzheimer's disease (AD) that may exacerbate disease progression. This study tested whether a dual orexin receptor antagonist (DORA) would enhance sleep and attenuate neuropathology, neuroinflammation, and cognitive deficits in an AD-relevant mouse model, 5XFAD.MethodsWild-type (C57Bl6/SJL) and 5XFAD mice received chronic treatment with vehicle or DORA-22. Piezoelectric recordings monitored sleep and spatial memory was assessed via spontaneous Y-maze alternations. Aβ plaques, Aβ levels, and neuroinflammatory markers were measured by immunohistochemistry, enzyme-linked immunosorbent assay, and real-time polymerase chain reaction, respectively.ResultsIn 5XFAD mice, DORA-22 significantly increased light-phase sleep without reducing Aβ levels, plaque density, or neuroinflammation. Effects of DORA-22 on cognitive deficits could not be determined because the 5XFAD mice did not exhibit deficits.DiscussionThese findings suggest that DORAs may improve sleep in AD patients. Further investigations should optimize the dose and duration of DORA-22 treatment and explore additional AD-relevant animal models and cognitive tests.
Project description:Opioid use disorder (OUD) is a chronic and relapsing condition that involves the continued and compulsive use of opioids despite harmful consequences. The development of medications with improved efficacy and safety profiles for OUD treatment is urgently needed. Drug repurposing is a promising option for drug discovery due to its reduced cost and expedited approval procedures. Computational approaches based on machine learning enable the rapid screening of DrugBank compounds, identifying those with the potential to be repurposed for OUD treatment. We collected inhibitor data for four major opioid receptors and used advanced machine learning predictors of binding affinity that fuse the gradient boosting decision tree algorithm with two natural language processing (NLP)-based molecular fingerprints and one traditional 2D fingerprint. Using these predictors, we systematically analyzed the binding affinities of DrugBank compounds on four opioid receptors. Based on our machine learning predictions, we were able to discriminate DrugBank compounds with various binding affinity thresholds and selectivities for different receptors. The prediction results were further analyzed for ADMET (absorption, distribution, metabolism, excretion, and toxicity), which provided guidance on repurposing DrugBank compounds for the inhibition of selected opioid receptors. The pharmacological effects of these compounds for OUD treatment need to be tested in further experimental studies and clinical trials. Our machine learning studies provide a valuable platform for drug discovery in the context of OUD treatment.
Project description:To present results from in vivo studies underlying the preclinical development of lemborexant (E2006), a novel dual orexin (hypocretin) receptor antagonist for sleep/wake regulation. Rodent (wild-type rats and wild-type and orexin neuron-deficient [orexin/ataxin-3 Tg/+] mice) studies were performed to evaluate the effects of single-dose oral lemborexant (1-300 mg/kg) on orexin-induced increases in plasma adrenocorticotropic hormone (ACTH), locomotor activity, vigilance state measures (wakefulness, nonrapid eye movement [non-REM] sleep, rapid eye movement [REM] sleep), ethanol-induced anesthesia, and motor coordination, and the effects of multiple-dose oral lemborexant (30 mg/kg) on vigilance state measures. Active comparators were almorexant and zolpidem. Pharmacokinetics were assessed after single-dose lemborexant in mice and rats. Lemborexant prevented the orexin-promoted increase in ACTH in rats, therefore demonstrating inhibition of the orexin signaling pathway. Furthermore, lemborexant promoted sleep in wild-type mice and rats. Lemborexant promoted REM and non-REM sleep at an equal rate (there was no change in the REM sleep ratio). In contrast, zolpidem reduced REM sleep. The sleep-promoting effect of lemborexant was mediated via the orexin-peptide signaling pathway as demonstrated by a lack of sleep promotion in orexin neuron-deficient mice. Chronic dosing was not associated with a change in effect size or sleep architecture immediately postdosing. Lemborexant did not increase the sedative effects of ethanol or impair motor coordination, showing good safety margin in animals. Pharmacokinetic/pharmacodynamic data for mice and rats were well aligned. These findings supported further clinical evaluation (ongoing at this time) of lemborexant as a potential candidate for treating insomnia and other sleep disorders.