Transovarial Transmission of Bacteriome-Associated Symbionts in the Cicada Pycna repanda (Hemiptera: Cicadidae).
Ontology highlight
ABSTRACT: Although transovarial transmission of bacteriome-associated symbionts in hemipteran insects is extremely important for maintaining intimate host-symbiont associations, our knowledge of cellular mechanisms underlying the transmission process is quite limited. We investigated bacterial communities of salivary glands, bacteriomes, and digestive and reproductive organs and clarified the transovarial transmission of bacteriome-associated symbionts of the mountain-habitat specialist Pycna repanda using integrated methods. The bacterial communities among different gut tissues and those of bacteriomes of males and females both show similarity, whereas differences are exhibited among bacterial communities in testes and ovaries. The primary symbionts "Candidatus Sulcia muelleri" (hereafter "Ca Sulcia") and "Candidatus Hodgkinia cicadicola" (hereafter "Ca Hodgkinia") were not only restricted to but also dominant in the bacteriomes and ovaries. "Ca Hodgkinia" cells in the bacteriomes of both sexes exhibited different colors by histological and electron microscopy. Also considering the results of a restriction fragment length polymorphism (RFLP)-based cloning approach, we hypothesize that "Ca Hodgkinia" may have split into cytologically different cellular lineages within this cicada species. Regarding the dominant secondary symbionts, Rickettsia was detected in the salivary glands, digestive organs, and testes, whereas Arsenophonus was detected in the bacteriomes and ovaries. Our results show that Arsenophonus can coexist with "Ca Sulcia" and "Ca Hodgkinia" within bacteriomes and can be transovarially transmitted with these obligate symbionts together from mother to offspring in cicadas, but it is not harbored in the cytoplasm of "Ca Sulcia." The change in the shape of "Ca Sulcia" and "Ca Hodgkinia" during the transovarial transmission process is hypothesized to be related to the limited space and novel microenvironment.IMPORTANCE Cicadas establish an intimate symbiosis with microorganisms to obtain essential nutrients that are extremely deficient in host plant sap. Previous studies on bacterial communities of cicadas mainly focused on a few widely distributed species, but knowledge about mountain-habitat species is quite poor. We initially revealed the physical distribution of the primary symbionts "Ca Sulcia" and "Ca Hodgkinia" and the dominant secondary symbionts Rickettsia and Arsenophonus in the mountain-habitat specialist Pycna repanda and then clarified the transovarial transmission process of bacteriome-associated symbionts in this species. Our observations suggest that "Ca Hodgkinia" may have split into cytologically distinct lineages within this cicada species, and related cicadas might have developed complex mechanisms for the vertical transmission of the bacteriome-associated symbionts. We also revealed that Arsenophonus can be transovarially transmitted in auchenorrhynchan insects when it is not harbored in the cytoplasm of other endosymbionts. Our results highlight transovarial transmission mechanisms of bacteriome-associated symbionts in sap-feeding insects.
SUBMITTER: Huang Z
PROVIDER: S-EPMC7267209 | biostudies-literature | 2020 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA