Unknown

Dataset Information

0

Modulation of proteomic and inflammatory signals by Bradykinin in podocytes.


ABSTRACT: Podocyte damage is one of the hallmarks of diabetic nephropathy leading to proteinuria and kidney damage. The underlying mechanisms of podocyte injury are not well defined. Bradykinin (BK) was shown to contribute to diabetic kidney disease. Here, we evaluated the temporal changes in proteome profile and inflammatory signals of podocytes in response to BK (10-7M). Protein profile was evaluated by liquid chromatography mass Spectrometry (LC-MS/MS) analysis. Proteome profile analysis of podocytes treated with BK (10-7M) for 3 and 6 h, revealed 61 proteins that were differentially altered compared to unstimulated control podocytes. Pathway enrichment analysis suggested inhibition of cell death pathways, engagement of cytoskeletal elements and activation of inflammatory pathways. One of the inflammatory proteins that was identified to be induced by BK treatment is Prostaglandin (PG) H Synthase-2 (Cyclooxygenase-2, COX-2). In addition, BK significantly induced the production and release of PGE2 and this effect was inhibited by both COX-2 and MEK Kinase inhibitors, demonstrating that the production of PGE2 by BK is mediated via COX-2 and MAPK-dependent mechanisms. These findings provide a global understanding of the effector modulated proteome in response to BK and also reveal BK as an important modulator of inflammation and a potential player in podocyte injury.

SUBMITTER: Saoud R 

PROVIDER: S-EPMC7270529 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Modulation of proteomic and inflammatory signals by Bradykinin in podocytes.

Saoud Richard R   Jaffa Miran A MA   Habib Aida A   Zhao Jingfu J   Al Hariri Moustafa M   Zhu Rui R   Hasan Anwarul A   Ziyadeh Fuad N FN   Kobeissy Firas F   Mechref Yehia Y   Jaffa Ayad A AA  

Journal of advanced research 20200528


Podocyte damage is one of the hallmarks of diabetic nephropathy leading to proteinuria and kidney damage. The underlying mechanisms of podocyte injury are not well defined. Bradykinin (BK) was shown to contribute to diabetic kidney disease. Here, we evaluated the temporal changes in proteome profile and inflammatory signals of podocytes in response to BK (10<sup>-7</sup>M). Protein profile was evaluated by liquid chromatography mass Spectrometry (LC-MS/MS) analysis. Proteome profile analysis of  ...[more]

Similar Datasets

2021-09-08 | PXD010015 | Pride
| S-EPMC8554507 | biostudies-literature
| S-EPMC8636058 | biostudies-literature
| S-EPMC7764689 | biostudies-literature
| S-EPMC3258948 | biostudies-literature
| S-EPMC7476106 | biostudies-literature
| S-EPMC2884574 | biostudies-literature
| S-EPMC6336988 | biostudies-literature
| S-EPMC4363873 | biostudies-literature