Project description:Hemophagocytic lymphohistiocytosis is a condition of immune dysregulation characterized by severe organ damage induced by a hyperinflammatory response and uncontrolled T-cell and macrophage activation. Secondary hemophagocytic lymphohistiocytosis typically occurs in association with severe infections or malignancies. Patients with acute myeloid leukemia may be prone to develop hemophagocytic lymphohistiocytosis because of an impaired immune response and a high susceptibility to severe infections. In a series of 343 patients treated by intensive chemotherapy over a 5-year period in our center, we identified 32 patients (9.3%) with fever, very high ferritin levels, and marrow hemophagocytosis (i.e. patients with hemophagocytic lymphohistiocytosis). Compared to patients without hemophagocytic lymphohistiocytosis, these 32 patients had hepatomegaly, pulmonary or neurological symptoms, liver abnormalities, lower platelet count and higher levels of C-reactive protein as well as prolonged pancytopenia. A microbial etiology for the hemophagocytosis was documented in 24 patients: 14 bacterial infections, 9 Herpesviridae infections and 11 fungal infections. The treatment of hemophagocytic lymphohistiocytosis consisted of corticosteroids and/or intravenous immunoglobulins along with adapted antimicrobial therapy. Patients with hemophagocytic lymphohistiocytosis had a median overall survival of 14.9 months, which was significantly shorter than that of patients without hemophagocytic lymphohistiocytosis (22.1 months) (P=0.0016). Hemophagocytic lymphohistiocytosis was significantly associated with a higher rate of induction failure, mainly due to deaths in aplasia. Hemophagocytic lymphohistiocytosis can be diagnosed in up to 10% of patients with acute myeloid leukemia undergoing intensive chemotherapy and is associated with early mortality. Fever, very high ferritin levels and marrow hemophagocytosis represent the cornerstone of the diagnosis. Further biological studies are needed to better characterize and recognize this syndrome in patients with acute myeloid leukemia.
Project description:Clinical trials are critical to improve AML treatment. It remains, however, unclear if clinical trial participation per se affects prognosis and to what extent the patients selected for trials differ from those of patients receiving intensive therapy off-trial.We conducted a population-based cohort study of newly diagnosed Danish AML patients treated with intensive chemotherapy between 2000-2013. We estimated accrual rates and compared characteristics, complete remission (CR) rates, and relative risks (RRs) of death at 90-day, 1-year, and 3-years in clinical trial patients to patients treated off-trial.Of 867 patients, 58.3% (n = 504) were included in a clinical trial. Accrual rates were similar across age groups (p = 0.55). Patients with poor performance status, comorbidity, therapy-related and secondary AML were less likely to be enrolled in trials. CR rates were 80.2% in trial-patients versus 68.6% in patients treated off- trial. Also, trial-patients had superior survival at 1-year; 72%, vs. 54% (adjusted RR of death 1.28(CI = 1.06-1.54)), and at 3 years; 45% vs. 29% (adjusted RR 1.14(CI = 1.03-1.26)) compared to patients treated off-trial.Despite high accrual rates, patients enrolled in clinical trials had a favorable prognostic profile and a better survival than patients treated off-trial. In conclusion, all trial results should be extrapolated with caution and population-based studies of "real world patients" have a prominent role in examining the prognosis of AML.
Project description:Global healthcare systems are challenged by the COVID-19 pandemic. There is a need to optimize allocation of treatment and resources in intensive care, as clinically established risk assessments such as SOFA and APACHE II scores show only limited performance for predicting the survival of severely ill COVID-19 patients. Comprehensively capturing the host physiology, we speculated that proteomics in combination with new data-driven analysis strategies could produce a new generation of prognostic discriminators. We studied two independent cohorts of patients with severe COVID-19 who required intensive care and invasive mechanical ventilation. SOFA score, Charlson comorbidity index and APACHE II score were poor predictors of survival. Instead, using plasma proteomes quantifying 302 plasma protein groups at 387 timepoints in 57 critically ill patients on invasive mechanical ventilation, we found 14 proteins that showed trajectories different between survivors and non-survivors. A proteomic predictor trained on single samples obtained at the first time point at maximum treatment level (i.e. WHO grade 7) and weeks before the outcome, achieved accurate classification of survivors (AUROC 0.81, n=49). We tested the established predictor on an independent validation cohort (AUROC of 1.0, n=24). The majority of proteins with high relevance in the prediction model belong to the coagulation system and complement cascade. Our study demonstrates that predictors derived from plasma protein levels have the potential to substantially outperform current prognostic markers in intensive care.
Project description:Chemotherapy is the major method of treatment for acute leukemia to date, while intensive chemotherapy may impair immunity. We previously reported that leukemia patients were more susceptible to COVID-19 than the overall population. However, for COVID-19 recovered patients with leukemia, the impacts of intensive chemotherapy on the immune memory of COVID-19 are unknown. This study characterized the changes in immune cells and SARS-CoV-2 antibodies in acute leukemia patients, who underwent chemotherapy after recovering from COVID-19. The study enrolled three groups of individuals. One group was a total of three acute leukemia patients, who recovered well from COVID-19 before the last cycle of chemotherapy. The other two groups were six COVID-19 recovered healthy people, and six normal uninfected healthy people, respectively. Levels of B cells, T cells, and NK cells in peripheral blood were analyzed by multiparameter flow cytometry. Besides, the SARS-CoV-2 antibodies were monitored. The results showed that B cells were severely decreased after chemotherapy, especially memory B cells. Most of the T cells and NK cells showed only minor changes after chemotherapy, except for γδ T cells. The serum levels of SARS-CoV-2 antibodies were not significantly affected after chemotherapy in two leukemia patients. However, interestingly, one leukemia patient's SARS-CoV-2 IgM showed dramatically increase, suggesting possible loss of serological memory after chemotherapy. These findings raised the concern for the stability of immune memory against SARS-CoV-2 during chemotherapy and the choice of anti-leukemia treatment in the COVID-19 pandemic.
Project description:Children with acute myeloid leukemia are at risk for sepsis and organ failure. Outcomes associated with intensive care support have not been studied in a large pediatric acute myeloid leukemia population. Our objective was to determine hospital mortality of pediatric acute myeloid leukemia patients requiring intensive care.Retrospective cohort study of children hospitalized between 1999 and 2010. Use of intensive care was defined by utilization of specific procedures and resources. The primary endpoint was hospital mortality.Forty-three children's hospitals contributing data to the Pediatric Health Information System database.Patients who are newly diagnosed with acute myeloid leukemia and who are 28 days through 18 years old (n = 1,673) hospitalized any time from initial diagnosis through 9 months following diagnosis or until stem cell transplant. A reference cohort of all nononcology pediatric admissions using the same intensive care resources in the same time period (n = 242,192 admissions) was also studied.None.One-third of pediatric patients with acute myeloid leukemia (553 of 1,673) required intensive care during a hospitalization within 9 months of diagnosis. Among intensive care admissions, mortality was higher in the acute myeloid leukemia cohort compared with the nononcology cohort (18.6% vs 6.5%; odds ratio, 3.23; 95% CI, 2.64-3.94). However, when sepsis was present, mortality was not significantly different between cohorts (21.9% vs 19.5%; odds ratio, 1.17; 95% CI, 0.89-1.53). Mortality was consistently higher for each type of organ failure in the acute myeloid leukemia cohort versus the nononcology cohort; however, mortality did not exceed 40% unless there were four or more organ failures in the admission. Mortality for admissions requiring intensive care decreased over time for both cohorts (23.7% in 1999-2003 vs 16.4% in 2004-2010 in the acute myeloid leukemia cohort, p = 0.0367; and 7.5% in 1999-2003 vs 6.5% in 2004-2010 in the nononcology cohort, p < 0.0001).Pediatric patients with acute myeloid leukemia frequently required intensive care resources, with mortality rates substantially lower than previously reported. Mortality also decreased over the time studied. Pediatric acute myeloid leukemia patients with sepsis who required intensive care had a mortality comparable to children without oncologic diagnoses; however, overall mortality and mortality for each category of organ failure studied was higher for the acute myeloid leukemia cohort compared with the nononcology cohort.
Project description:The prognostic impact of immunophenotypic CD34+CD38-CD123+ leukemic stem cell (iLSC) frequency at diagnosis has been demonstrated in younger patients treated by intensive chemotherapy, however, this is less clear in older patients. Furthermore, the impact of iLSC in patients treated by hypomethylating agents is unknown. In this single-center study, we prospectively assessed the CD34+CD38-CD123+ iLSC frequency at diagnosis in acute myeloid leukemia (AML) patients aged 60 years or older. In a cohort of 444 patients, the median percentage of iLSC at diagnosis was 4.3%. Significant differences were found between treatment groups with a lower median in the intensive chemotherapy group (0.6%) compared to hypomethylating agents (8.0%) or supportive care (11.1%) (p <0.0001). In the intensive chemotherapy group, the median overall survival was 34.5 months in patients with iLSC ?0.10% and 14.6 months in patients with >0.10% (p = 0.031). In the multivariate analyses of this group, iLSC frequency was significantly and independently associated with the incidence of relapse, event-free, relapse-free, and overall survival. However, iLSC frequency had no prognostic impact on patients treated by hypomethylating agents. Thus, the iLSC frequency at diagnosis is an independent prognostic factor in older acute myeloid patients treated by intensive chemotherapy but not hypomethylating agents.
Project description:Despite advances in antimicrobial treatments, infection remains a common complication of intensive chemotherapy in patients with acute leukemia. It has become progressively apparent that the current antimicrobial focus has shortcomings that result from disruption of the commensal microbial communities of the gut. These effects, collectively known as dysbiosis, have been increasingly associated worldwide with growing complications such as Clostridioides difficile infection, systemic infections, and antibiotic resistance. A revision of the current practice is overdue. Several innovative concepts have been proposed and tested in animal models and humans, with the overarching goal of preventing damage to the microbiota and facilitating its recovery. In this review, we discuss these approaches, examine critical knowledge gaps, and explore how they may be filled in future research.
Project description:The treatment of older patients with acute myeloid leukemia that is secondary to previous myelodysplastic syndrome, myeloproliferative neoplasm, or prior cytotoxic exposure remains unsatisfactory. We compared 92 and 107 patients treated, respectively, with intensive chemotherapy or azacitidine within two centres. Diagnoses were 37.5% post-myelodysplastic syndrome, 17.4% post-myeloproliferative neoplasia, and 45.1% therapy-related acute myeloid leukemia. Patients treated by chemotherapy had less adverse cytogenetics, higher white blood-cell counts, and were younger: the latter two being independent factors entered into the multivariate analyses. Median overall-survival times with chemotherapy and azacitidine were 9.6 (IQR: 3.6-22.8) and 10.8 months (IQR: 4.8-26.4), respectively (p = 0.899). Adjusted time-dependent analyses showed that, before 1.6 years post-treatment, there were no differences in survival times between chemotherapy and azacitidine treatments whereas, after this time-point, patients that received chemotherapy had a lower risk of death compared to those that received azacitidine (adjusted HR 0.61, 95%CI: 0.38-0.99 at 1.6 years). There were no interactions between treatment arms and secondary acute myeloid leukemia subtypes in all multivariate analyses, indicating that the treatments had similar effects in all three subtypes. Although a comparison between chemotherapy and azacitidine remains challenging, azacitidine represents a valuable alternative to chemotherapy in older patients that have secondary acute myeloid leukemia because it provides similar midterm outcomes with less toxicity.
Project description:BackgroundThe phase 3 VIALE-A trial (NCT02993523) reported that venetoclax-azacitidine significantly prolonged overall survival compared with placebo-azacitidine in patients with newly diagnosed acute myeloid leukemia ineligible for intensive chemotherapy. Herein, efficacy and safety of venetoclax-azacitidine are analyzed in the Japanese subgroup of VIALE-A patients.MethodsEligible Japanese patients were randomized 2:1 to venetoclax-azacitidine (N = 24) or placebo-azacitidine (N = 13). Primary endpoints for Japan were overall survival and complete response (CR) + CR with incomplete hematologic recovery (CRi). Venetoclax (target dose 400 mg) was given orally once daily. Azacitidine (75 mg/m2) was administered subcutaneously or intravenously on Days 1-7 of each 28-day cycle.ResultsMedian follow-up was 16.3 months (range, 1.0-20.3). Median overall survival was not reached with venetoclax-azacitidine (hazard ratio 0.409 and 95% confidence interval: 0.151, 1.109); overall survival estimate was higher with venetoclax-azacitidine than placebo-azacitidine at 12 (67 and 46%) and 18 months (57 and 31%), respectively. CR and CRi rates were 67% with venetoclax-azacitidine and 15% with placebo-azacitidine. Most common any-grade adverse events were febrile neutropenia (79 and 39%), thrombocytopenia (54 and 77%), constipation (54 and 54%) and decreased appetite (54 and 38%) in the venetoclax-azacitidine and placebo-azacitidine arms, respectively. Only 1 patient in the venetoclax-azacitidine arm, and no patients in the placebo-azacitidine arm, had grade 4 febrile neutropenia that led to treatment discontinuation.ConclusionsThis Japanese subgroup analysis of VIALE-A demonstrates comparable safety and efficacy outcomes compared with the global study and supports venetoclax-azacitidine as first-line standard-of-care for Japanese treatment-naive patients with acute myeloid leukemia who are ineligible for intensive chemotherapy.