Unknown

Dataset Information

0

Bayesian State Space Modeling of Physical Processes in Industrial Hygiene.


ABSTRACT: Exposure assessment models are deterministic models derived from physical-chemical laws. In real workplace settings, chemical concentration measurements can be noisy and indirectly measured. In addition, inference on important parameters such as generation and ventilation rates are usually of interest since they are difficult to obtain. In this article, we outline a flexible Bayesian framework for parameter inference and exposure prediction. In particular, we devise Bayesian state space models by discretizing the differential equation models and incorporating information from observed measurements and expert prior knowledge. At each time point, a new measurement is available that contains some noise, so using the physical model and the available measurements, we try to obtain a more accurate state estimate, which can be called filtering. We consider Monte Carlo sampling methods for parameter estimation and inference under nonlinear and non-Gaussian assumptions. The performance of the different methods is studied on computer-simulated and controlled laboratory-generated data. We consider some commonly used exposure models representing different physical hypotheses. Supplementary materials for this article are available online.

SUBMITTER: Abdalla N 

PROVIDER: S-EPMC7271698 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bayesian State Space Modeling of Physical Processes in Industrial Hygiene.

Abdalla Nada N   Banerjee Sudipto S   Ramachandran Gurumurthy G   Arnold Susan S  

Technometrics : a journal of statistics for the physical, chemical, and engineering sciences 20190722 2


Exposure assessment models are deterministic models derived from physical-chemical laws. In real workplace settings, chemical concentration measurements can be noisy and indirectly measured. In addition, inference on important parameters such as generation and ventilation rates are usually of interest since they are difficult to obtain. In this article, we outline a flexible Bayesian framework for parameter inference and exposure prediction. In particular, we devise Bayesian state space models b  ...[more]

Similar Datasets

| S-EPMC7180385 | biostudies-literature
| S-EPMC6957329 | biostudies-literature
| S-EPMC2142382 | biostudies-other
| S-EPMC4575262 | biostudies-literature
| S-EPMC7968659 | biostudies-literature
| S-EPMC8536256 | biostudies-literature
| S-EPMC6928115 | biostudies-literature
| S-EPMC9616823 | biostudies-literature
| S-EPMC2887612 | biostudies-literature
| S-EPMC7302714 | biostudies-literature