ABSTRACT: Many fertilization models have been created to scientifically determine the amount of fertilization. With the same purpose, we constructed a nitrogen (N) application model, the leaf value model, which can make N fertilizer decisions in a timely, fast and nondestructive manner during rice planting. However, only one area (A1, Jiuzhou Town, Xixiu District, Guizhou Province) and one cultivar (Qyou6) were involved in the construction of the leaf value model. Its stability and applicability could not be well evaluated. Thus, we chose another area (A2, Jiuzhou Town, Huangping County, Guizhou Province) in Guizhou Province and carried out the experiment by using four cultivars (Nie5you5399, Qyou6, Yixiangyou2115 and Zhongzheyou8) for the leaf value model construction. Compared with the average value of apparent total N uptake (Nz) obtained in 2 years in the A1 area, that in the Qyou6 leaf value model in the A2 area increased by 12%, reaching 635.72 kg ha-1, whereas the corresponding target yield changed slightly, reaching 10,999.90 kg ha-1. Simultaneously, the linear relationship between several good SPAD value-derived indexes (Ys) and apparent N supply of the field (Nx) was still significant or extremely significant in the Qyou6 leaf value model. Compared with the A1 area, it slightly differed, and the R2 of SPADL1 was higher than that of SPADL3×L4/mean. In the leaf value model of the other three cultivars, the relationship between yield and Nx and that between Ys and Nx were significant or extremely significant. The Nz of Yixiangyou2115 and Zhongzheyou8 (618.33 and 617.76 kg ha-1) were close to that of Qyou6 and the corresponding target yields were 10313.36 and 10301.99 kg ha-1, respectively. The Nz and target yield of Nie5you5399 were lowest at 546.63 and 10680.24 kg ha-1, respectively. In general, this study showed that relationships used in the construction of leaf value model had certain stability and applicability to difference areas and cultivars. The leaf value model can be considered in N fertilizer decision-making of rice planting management.