Project description:In phase 2 of ZUMA-1, a single-arm, multicenter, registrational trial, axicabtagene ciloleucel (axi-cel) autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy demonstrated durable responses at 2 years in patients with refractory large B-cell lymphoma (LBCL). Here, we assessed outcomes in ZUMA-1 after 5 years of follow-up. Eligible adults received lymphodepleting chemotherapy followed by axi-cel (2 × 106 cells per kg). Investigator-assessed response, survival, safety, and pharmacokinetics were assessed in patients who had received treatment. The objective response rate in these 101 patients was 83% (58% complete response rate); with a median follow-up of 63.1 months, responses were ongoing in 31% of patients at data cutoff. Median overall survival (OS) was 25.8 months, and the estimated 5-year OS rate was 42.6%. Disease-specific survival (excluding deaths unrelated to disease progression) estimated at 5 years was 51.0%. No new serious adverse events or deaths related to axi-cel were observed after additional follow-up. Peripheral blood B cells were detectable in all evaluable patients at 3 years with polyclonal B-cell recovery in 91% of patients. Ongoing responses at 60 months were associated with early CAR T-cell expansion. In conclusion, this 5-year follow-up analysis of ZUMA-1 demonstrates sustained overall and disease-specific survival, with no new safety signals in patients with refractory LBCL. Protracted B-cell aplasia was not required for durable responses. These findings support the curative potential of axi-cel in a subset of patients with aggressive B-cell lymphomas. This trial was registered at ClinicalTrials.gov, as #NCT02348216.
Project description:Here, we report the first comparative analysis of patient-reported outcomes (PROs) with chimeric antigen receptor T-cell therapy vs standard-of-care (SOC) therapy in second-line relapsed/refractory large B-cell lymphoma (R/R LBCL) from the pivotal randomized phase 3 ZUMA-7 study of axicabtagene ciloleucel (axi-cel) vs SOC. PRO instruments were administered at baseline, day 50, day 100, day 150, month 9, and every 3 months from randomization until 24 months or an event-free survival event. The quality of life (QoL) analysis set comprised patients with a baseline and ≥1 follow-up PRO completion. Prespecified hypotheses for Quality of Life Questionnaire-Core 30 (QLQ-C30) physical functioning, global health status/QoL, and EQ-5D-5L visual analog scale (VAS) were tested using mixed-effects models with repeated measures. Clinically meaningful changes were defined as 10 points for QLQ-C30 and 7 for EQ-5D-5L VAS. Among 359 patients, 296 (165 axi-cel, 131 SOC) met inclusion criteria for QoL analysis. At day 100, statistically significant and clinically meaningful differences in mean change of scores from baseline were observed favoring axi-cel over SOC for QLQ-C30 global health status/QoL (estimated difference 18.1 [95% confidence interval (CI), 12.3-23.9]), physical functioning (13.1 [95% CI, 8.0-18.2]), and EQ-5D-5L VAS (13.7 [95% CI, 8.5-18.8]; P < .0001 for all). At day 150, scores significantly favored axi-cel vs SOC for global health status/QoL (9.8 [95% CI, 2.6-17.0]; P = .0124) and EQ-5D-5L VAS (11.3 [95% CI, 5.4-17.1]; P = .0004). Axi-cel showed clinically meaningful improvements in QoL over SOC. Superior clinical outcomes and favorable patient experience with axi-cel should help inform treatment choices in second-line R/R LBCL. This trial was registered at www.clinicaltrials.gov as #NCT03391466.
Project description:PurposeChimeric antigen receptor (CAR) T-cell therapies have shown clinical benefit for patients with relapsed/refractory (R/R) large B-cell lymphoma (LBCL), yet approximately 60% of patients do not respond or eventually relapse. We investigated the safety and feasibility of the CD19-directed CAR T-cell therapy axicabtagene ciloleucel (axi-cel) in combination with the 4-1BB agonist antibody utomilumab as an approach to improve efficacy of CAR T-cell therapy.Patients and methodsIn phase 1 of the single-arm ZUMA-11 trial, patients with R/R LBCL received a single axi-cel infusion (target dose, 2 × 106 cells/kg) plus utomilumab 10 to 200 mg intravenously every 4 weeks for up to 6 months in a dose-escalation design. The primary endpoint was incidence of dose-limiting toxicities (DLT) with utomilumab. Key secondary endpoints were safety, antitumor activity, pharmacokinetics, and pharmacodynamics.ResultsNo DLTs were observed among patients treated with axi-cel and utomilumab (n = 12). Grade ≥3 adverse events occurred in 10 patients (83%); none were Grade ≥3 cytokine release syndrome or neurologic events. The objective response rate was 75% and seven patients (58%) had a complete response. Peak CAR T-cell levels increased in a utomilumab dose-dependent manner up to 100 mg. Patients who received utomilumab 100 mg had persistently increased CAR T cells on days 57 to 168 compared with other dose levels. Utomilumab was associated with dose-dependent increases in IL2, IFNγ, and IL10.ConclusionsUtomilumab-mediated 4-1BB agonism combined with axi-cel therapy had a manageable safety profile. Dual 4-1BB and CD28 costimulation is a feasible therapeutic approach that may enhance CAR T-cell expansion in patients with LBCL.
Project description:BACKGROUND:In a phase 1 trial, axicabtagene ciloleucel (axi-cel), an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy, showed efficacy in patients with refractory large B-cell lymphoma after the failure of conventional therapy. METHODS:In this multicenter, phase 2 trial, we enrolled 111 patients with diffuse large B-cell lymphoma, primary mediastinal B-cell lymphoma, or transformed follicular lymphoma who had refractory disease despite undergoing recommended prior therapy. Patients received a target dose of 2×106 anti-CD19 CAR T cells per kilogram of body weight after receiving a conditioning regimen of low-dose cyclophosphamide and fludarabine. The primary end point was the rate of objective response (calculated as the combined rates of complete response and partial response). Secondary end points included overall survival, safety, and biomarker assessments. RESULTS:Among the 111 patients who were enrolled, axi-cel was successfully manufactured for 110 (99%) and administered to 101 (91%). The objective response rate was 82%, and the complete response rate was 54%.With a median follow-up of 15.4 months, 42% of the patients continued to have a response, with 40% continuing to have a complete response. The overall rate of survival at 18 months was 52%. The most common adverse events of grade 3 or higher during treatment were neutropenia (in 78% of the patients), anemia (in 43%), and thrombocytopenia (in 38%). Grade 3 or higher cytokine release syndrome and neurologic events occurred in 13% and 28% of the patients, respectively. Three of the patients died during treatment. Higher CAR T-cell levels in blood were associated with response. CONCLUSIONS:In this multicenter study, patients with refractory large B-cell lymphoma who received CAR T-cell therapy with axi-cel had high levels of durable response, with a safety profile that included myelosuppression, the cytokine release syndrome, and neurologic events. (Funded by Kite Pharma and the Leukemia and Lymphoma Society Therapy Acceleration Program; ZUMA-1 ClinicalTrials.gov number, NCT02348216 .).
Project description:IntroductionCD19-directed chimeric antigen receptor (CAR) T-cell therapy is a highly effective therapy for patients with relapsed/refractory large B-cell lymphoma (LBCL) and three CD19 CAR T-cell products (axicabtagene ciloleucel, tisagenlecleucel and lisocabtagene maraleucel) are currently approved for this indication. Despite the clinical benefit of CD19 directed CAR T-cell therapy, this treatment is associated with significant morbidity from treatment-emergent toxicities.Areas coveredThis Review discusses the safety considerations of axicabtagene ciloleucel in patients with LBCL. This includes discussion of the frequently observed immune-mediated toxicities of cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. Additionally, we review CAR T-cell therapy related cytopenias, infection, organ dysfunction and the more recently described hemophagocytic lymphohistiocytosis.Expert opinionA thorough understanding of the toxicities associated with CD19-directed CAR T-cell therapy will facilitate the optimal selection of patients for this therapy. Furthermore, knowledge of preventative measures of CAR T-cell related complications, and early recognition and appropriate intervention will lead to the safe administration of these therapies, and ultimately improved outcomes for our patients.
Project description:BackgroundAxicabtagene ciloleucel is an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy. In the previous analysis of the ZUMA-1 registrational study, with a median follow-up of 15·4 months (IQR 13·7-17·3), 89 (82%) of 108 assessable patients with refractory large B-cell lymphoma treated with axicabtagene ciloleucel achieved an objective response, and complete responses were noted in 63 (58%) patients. Here we report long-term activity and safety outcomes of the ZUMA-1 study.MethodsZUMA-1 is a single-arm, multicentre, registrational trial at 22 sites in the USA and Israel. Eligible patients were aged 18 years or older, and had histologically confirmed large B-cell lymphoma-including diffuse large B-cell lymphoma, primary mediastinal B-cell lymphoma, and transformed follicular lymphoma-according to the 2008 WHO Classification of Tumors of Hematopoietic and Lymphoid Tissue; refractory disease or relapsed after autologous stem-cell transplantation; an Eastern Cooperative Oncology Group performance status of 0 or 1; and had previously received an anti-CD20 monoclonal antibody containing-regimen and an anthracycline-containing chemotherapy. Participants received one dose of axicabtagene ciloleucel on day 0 at a target dose of 2 × 106 CAR T cells per kg of bodyweight after conditioning chemotherapy with intravenous fludarabine (30 mg/m2 body-surface area) and cyclophosphamide (500 mg/m2 body-surface area) on days -5, -4, and -3. The primary endpoints were safety for phase 1 and the proportion of patients achieving an objective response for phase 2, and key secondary endpoints were overall survival, progression-free survival, and duration of response. Pre-planned activity and safety analyses were done per protocol. ZUMA-1 is registered with ClinicalTrials.gov, number NCT02348216. Although the registrational cohorts are closed, the trial remains open, and recruitment to extension cohorts with alternative endpoints is underway.FindingsBetween May 19, 2015, and Sept 15, 2016, 119 patients were enrolled and 108 received axicabtagene ciloleucel across phases 1 and 2. As of the cutoff date of Aug 11, 2018, 101 patients assessable for activity in phase 2 were followed up for a median of 27·1 months (IQR 25·7-28·8), 84 (83%) had an objective response, and 59 (58%) had a complete response. The median duration of response was 11·1 months (4·2-not estimable). The median overall survival was not reached (12·8-not estimable), and the median progression-free survival was 5·9 months (95% CI 3·3-15·0). 52 (48%) of 108 patients assessable for safety in phases 1 and 2 had grade 3 or worse serious adverse events. Grade 3 or worse cytokine release syndrome occurred in 12 (11%) patients, and grade 3 or worse neurological events in 35 (32%). Since the previous analysis at 1 year, additional serious adverse events were reported in four patients (grade 3 mental status changes, grade 4 myelodysplastic syndrome, grade 3 lung infection, and two episodes of grade 3 bacteraemia), none of which were judged to be treatment related. Two treatment-related deaths (due to haemophagocytic lymphohistiocytosis and cardiac arrest) were previously reported, but no new treatment-related deaths occurred during the additional follow-up.InterpretationThese 2-year follow-up data from ZUMA-1 suggest that axicabtagene ciloleucel can induce durable responses and a median overall survival of greater than 2 years, and has a manageable long-term safety profile in patients with relapsed or refractory large B-cell lymphoma.FundingKite and the Leukemia & Lymphoma Society Therapy Acceleration Program.
Project description:High-risk large B-cell lymphoma (LBCL) has poor outcomes with standard first-line chemoimmunotherapy. In the phase 2, multicenter, single-arm ZUMA-12 study (ClinicalTrials.gov NCT03761056) we evaluated axicabtagene ciloleucel (axi-cel), an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy, as part of first-line treatment in 40 patients with high-risk LBCL. This trial has completed accrual. The primary outcome was complete response rate (CRR). Secondary outcomes were objective response rate (ORR), duration of response (DOR), event-free survival (EFS), progression-free survival (PFS), overall survival (OS), assessment of safety, central nervous system (CNS) relapse and blood levels of CAR T cells and cytokines. The primary endpoint in efficacy-evaluable patients (n = 37) was met, with 78% CRR (95% confidence interval (CI), 62-90) and 89% ORR (95% CI, 75-97). As of 17 May 2021 (median follow-up, 15.9 months), 73% of patients remained in objective response; median DOR, EFS and PFS were not reached. Grade ≥3 cytokine release syndrome (CRS) and neurologic events occurred in three patients (8%) and nine patients (23%), respectively. There were no treatment-related grade 5 events. Robust CAR T-cell expansion occurred in all patients with a median time to peak of 8 days. We conclude that axi-cel is highly effective as part of first-line therapy for high-risk LBCL, with a manageable safety profile.
Project description:BackgroundAxicabtagene ciloleucel (axi-cel) is an autologous chimeric antigen receptor T-cell based anti-CD19 therapy. The ZUMA-1 study, multicenter, single-arm, registrational Phase 1/2 study of axi-cel demonstrated high objective response rate in patients with relapsed/refractory large B-cell lymphoma. Here, we present the results of the bridging study to evaluate the efficacy and safety of axi-cel in Japanese patients (JapicCTI-183914).MethodsThis study was the phase 2, multicenter, open-label, single-arm trial. Following leukapheresis, axi-cel manufacturing and lymphodepleting chemotherapy, patients received a single infusion of axi-cel (2.0 × 106 cells/kg). Bridging therapy between leukapheresis and conditioning chemotherapy was not allowed. The primary endpoint was objective response rate.ResultsAmong 17 enrolled patients, 16 received axi-cel infusion. In the 15 efficacy evaluable patients, objective response rate was 86.7% (95% confidence interval: 59.5-98.3%); complete response/partial response were observed in 4 (26.7%)/9 (60.0%) patients, respectively. No dose-limiting toxicities were observed. Grade ≥ 3 treatment-emergent adverse events occurred in 16 (100%) patients-most commonly neutropenia (81.3%), lymphopenia (81.3%) and thrombocytopenia (62.5%). Cytokine release syndrome occurred in 13 (81.3%) patients (12 cases of grade 1 or 2 and 1 case of grade 4). No neurologic events occurred. Two patients died due to disease progression, but no treatment-related death was observed by the data-cutoff date (October 23, 2019).ConclusionThe efficacy and safety of axi-cel was confirmed in Japanese patients with relapsed/refractory large B-cell lymphoma who have otherwise limited treatment options.Trial registrationJapicCTI-183914.
Project description:The ZUMA-7 (Efficacy of Axicabtagene Ciloleucel Compared to Standard of Care Therapy in Subjects With Relapsed/Refractory Diffuse Large B Cell Lymphoma) study showed that axicabtagene ciloleucel (axi-cel) improved event-free survival (EFS) compared with standard of care (SOC) salvage chemoimmunotherapy followed by autologous stem cell transplant in primary refractory/early relapsed diffuse large B-cell lymphoma (DLBCL); this led to its recent US Food and Drug Administration approval in this setting. We modeled a hypothetical cohort of US adults (mean age, 65 years) with primary refractory/early relapsed DLBCL by developing a Markov model (lifetime horizon) to model the cost-effectiveness of second-line axi-cel compared with SOC using a range of plausible long-term outcomes. EFS and OS were estimated from ZUMA-7. Outcome measures were reported in incremental cost-effectiveness ratios, with a willingness-to-pay (WTP) threshold of $150 000 per quality-adjusted life-year (QALY). Assuming a 5-year EFS of 35% with second-line axi-cel and 10% with SOC, axi-cel was cost-effective at a WTP of $150 000 per QALY ($93 547 per QALY). axi-cel was no longer cost-effective if its 5-year EFS was ≤26.4% or if it cost more than $972 061 at a WTP of $150 000. Second-line axi-cel was the cost-effective strategy in 73% of the 10 000 Monte Carlo iterations at a WTP of $150 000. If the absolute benefit in EFS is maintained over time, second-line axi-cel for aggressive relapsed/refractory DLBCL is cost-effective compared with SOC at a WTP of $150 000 per QALY. However, its cost-effectiveness is highly dependent on long-term outcomes. Routine use of second-line chimeric antigen receptor T-cell therapy would add significantly to health care expenditures in the United States (more than $1 billion each year), even when used in a high-risk subpopulation. Further reductions in the cost of chimeric antigen receptor T-cell therapy are needed to be affordable in many regions of the world.