Project description:IntroductionUsing ozone therapy to manage COVID-19 patients has been accompanied by conflicting results in prior studies. Therefore, we aimed to widely assess the effects of ozone as adjuvant therapy in COVID-19 patients.MethodsPubMed, Scopus, Web of Science, Cochrane, ProQuest, Springer, and Sage journals were searched systematically until April 2022. Mortality rate, ICU admission, hospital-length stay, negative PCR, pulmonary, renal, and hepatic functions, as well as inflammatory and blood systems were pooled to compare the efficacy of ozone as adjacent therapy (OZ) and standard treatment (ST). Analyses were run with the random/fixed models, sub-group analysis, funnel plot, and sensitivity analysis using comprehensive meta-analysis (CMA) software version 2.0.ResultsThe results of four randomized clinical trials (RCTs) and four case-control studies with a total of 371 COVID-19 positive patients were analyzed. The OZ group patients had a shorter length of hospital stay (P > 0.05), lower ICU admissions (P > 0.05), and lower mortality rates (P < 0.05) than the ST group cases. After treatment, 41% more COVID-19 patients had negative PCR tests than the ST group (P < 0.05). Serum creatinine and urea levels were not modified in either group (P > 0.05). Moreover, except for albumin serum levels, which decreased significantly in the OZ group, serum bilirubin, ALT, and AST were not modified in either group (P > 0.05). Both arms did not show a decrease in C-reactive protein blood levels (P > 0.05), but the OZ group showed a significant modification in LDH serum levels (P < 0.05). Unlike the d-dimer and WBC serum levels (P > 0.05), platelet levels were increased in the OZ group (P < 0.05). No negative side effects were demonstrated in either group.ConclusionOzone therapy was effective significantly on PCR test and LDH serum levels, as well as mortality based on overall estimation. Concerning the length of hospital stay and ICU admissions, although the results were insignificant, their effect sizes were notable clinically. More RCT studies are needed to show the efficacy of ozone therapy on other studied variables.
Project description:BackgroundThere is still no specific treatment strategies for COVID-19 other than supportive management.DesignA prospective case-control study determined by admittance to the hospital based on bed availability.ParticipantsEighteen patients with COVID-19 infection (laboratory confirmed) severe pneumonia admitted to hospital between 20th March and 19th April 2020. Patients admitted to the hospital during the study period were assigned to different beds based on bed availability. Depending on the bed the patient was admitted, the treatment was ozone autohemotherapy or standard treatment. Patients in the case group received ozonated blood twice daily starting on the day of admission for a median of four days. Each treatment involved administration of 200 mL autologous whole blood enriched with 200 mL of oxygen-ozone mixture with a 40 μg/mL ozone concentration.Main outcomesThe primary outcome was time from hospital admission to clinical improvement.ResultsNine patients (50%) received ozonated autohemotherapy beginning on the day of admission. Ozonated autohemotherapy was associated with shorter time to clinical improvement (median [IQR]), 7 days [6-10] vs 28 days [8-31], p = 0.04) and better outcomes at 14-days (88.8% vs 33.3%, p = 0.01). In risk-adjusted analyses, ozonated autohemotherapy was associated with a shorter mean time to clinical improvement (-11.3 days, p = 0.04, 95% CI -22.25 to -0.42).ConclusionOzonated autohemotherapy was associated with a significantly shorter time to clinical improvement in this prospective case-control study. Given the small sample size and study design, these results require evaluation in larger randomized controlled trials.Clinical trial registration numberNCT04444531.
Project description:ObjectiveThis study evaluated the potential efficacy of a novel approach to treat COVID-19 patients, using an oxygen-ozone (O2-O3) mixture, via a process called Oxygen-Ozone- Immunoceutical Therapy. The methodology met the criteria of a novel, promising approach to treat successfully elderly COVID-19 patients, particularly when hospitalized in intensive care units (ICUs) Experimental design: We investigated the therapeutic effect of 4 cycles of O2-O3 in 50 hospitalized COVID-19 subjects suffering from acute respiratory disease syndrome (ARDS), aged more than 60 years, all males and undergoing non invasive mechanical ventilation in ICUs.ResultsFollowing O2-O3 treatment a significant improvement in inflammation and oxygenation indexes occurred rapidly and within the first 9 days after the treatment, despite the expected 14-20 days. A significant reduction of inflammatory and thromboembolic markers (CRP, IL-6, D-dimer) was observed. Furthermore, amelioration in the major respiratory indexes, such as respiratory and gas exchange markers (SatO2%, PaO2/FiO2 ratio), was reported.ConclusionOur results show that O2-O3 treatment would be a promising therapy for COVID-19 patients. It leads patients to a fast recovery from ARDS via the improvement of major respiratory indexes and blood gas parameters, following a relatively short time of dispensed forced ventilation (about one to two weeks). This study may encourage the scientific community to further investigate and evaluate the proposed method for the treatment of COVID-19 patients.
Project description:Coronavirus disease 2019 (COVID-19) is the respiratory disease caused by the novel severe acute respiratory syndrome-coronavirus-2 and is characterized by clinical manifestations ranging from mild, flu-like symptoms to severe respiratory insufficiency and multi-organ failure. Patients with more severe symptoms may require intensive care treatments and face a high mortality risk. Also, thrombotic complications such as pulmonary embolisms and disseminated intravascular coagulation are frequent in these patients. Indeed, COVID-19 is characterized by an abnormal inflammatory response resembling a cytokine storm, which is associated to endothelial dysfunction and microvascular complications. To date, no specific treatments are available for COVID-19 and its life-threatening complication. Immunomodulatory drugs, such as hydroxychloroquine and interleukin-6 inhibitors, as well as antithrombotic drugs such as heparin and low molecular weight heparin, are currently being administered with some benefit. Ozone therapy consists in the administration of a mixture of ozone and oxygen, called medical ozone, which has been used for over a century as an unconventional medicine practice for several diseases. Medical ozone rationale in COVID-19 is the possibility of contrasting endothelial dysfunction, modulating the immune response and acting as a virustatic agent. Thus, medical ozone could help to decrease lung inflammation, slow down viral growth, regulate lung circulation and oxygenation and prevent microvascular thrombosis. Ozone-therapy could be considered a feasible, cost-effective and easy to administer adjuvant therapy while waiting for the synthesis of a therapy or the development of the vaccine.
Project description:(1) Background: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) in China at the end of 2019 has caused a large global outbreak. Systemic ozone therapy (OT) could be potentially useful in the clinical management of several complications secondary to SARS-CoV-2. The rationale and mechanism of action has already been proven clinically in other viral infections and has been shown in research studies to be highly effective at decreasing organ damage mediated by inflammation and oxidative stress. This review summarizes the OT studies that illustrate the possible cytoprotective mechanism of action of ozone and its physiological by-products in target organs affected by SARS-CoV-2. (2) Methods: This review encompasses a total of 74 peer-reviewed original articles. It is mainly focused on ozone as a modulator of the NF-? B/Nrf2 pathways and IL-6/IL-1? expression. (3) Results: In experimental models and the few existent clinical studies, homeostasis of the free radical and antioxidant balance by OT was associated with a modulation of NF-? B/Nrf2 balance and IL-6 and IL-1? expression. These molecular mechanisms support the cytoprotective effects of OT against tissue damage present in many inflammatory diseases, including viral infections. (4) Conclusions: The potential cytoprotective role of OT in the management of organ damage induced by COVID-19 merits further research. Controlled clinical trials are needed.
Project description:Remdesivir is one of few FDA-approved treatments for severe cases of Coronavirus Disease 2019 (COVID-19). To better assess its efficacy and safety, we conducted a meta-analysis to systematically identify and synthesize existing findings. We conducted a comprehensive literature search among six electronic databases and unpublished studies. Random-effects meta-analyses were performed to summarize the risk ratio (RR) and rate estimates from eligible studies. Funnel plots, the Egger test, and the trim and fill analysis were used to detect publication bias. Thirteen eligible studies were included in this meta-analysis, giving a pooled sample size of 10,002 COVID-19 hospitalized patients (5068 administered remdesivir; 4934 control). Among patients on remdesivir, we synthesized mortality (15%, 95% confidence interval [CI]: 9%, 22%), clinical improvement (64%, 95% CI: 51%, 78%), recovery (70%, 95% CI: 57%, 83%), hospital discharge (74%, 95% CI: 60%, 87%), serious adverse effect (SAE) (21%, 95% CI:13%, 29%), and Grade 3 or 4 adverse effect (AE) (30%, 95% CI: 12%, 48%). Patients on remdesivir were 17% (RR: 0.83, 95% CI: 0.65, 1.06) less likely to die than those within the control group. Additionally, remdesivir had favorable outcomes in terms of clinical improvement, recovery, and hospital discharge. Lastly, non-mechanically ventilated patients had better overall clinical outcomes than mechanically ventilated patients. Remdesivir shows a moderate-favorable treatment efficacy among hospitalized COVID-19 patients with disproportionate impact among non-mechanically ventilated patients; however, a substantial proportion of COVID-19 patients may suffer from SAE or Grade 3 or 4 AE during the treatment course.Supplementary informationThe online version contains supplementary material available at 10.1007/s42399-021-01014-y.
Project description:ObjectiveOzone adjuvant in COVID-19 management showed conflicting results in prior studies. Here, we aimed to comprehensively evaluate benefits and side effects of ozone as adjuvant therapy in COVID-19 patients.MethodsSystematic searches were conducted in MEDLINE, ScienceDirect, Cochrane Library, Springer, medRxiv, and ProQuest for articles investigating ozone as adjuvant therapy in COVID-19. Clinical and laboratory outcomes, mortality, length of hospital stay, intensive care unit (ICU) admission, and adverse events were assessed.ResultsThirteen studies were included in this review. Case-control studies, but not randomized controlled trials (RCTs), showed a decrease in mortality following ozone therapy (OR = 0.24 (95% CI [0.07-0.76]), p = 0.02, I2 = 0%, fixed-effect). However, ozone therapy did not improve the length of hospital stay (SMD = -0.99 (95 %CI -2.44 to 0.45), p = 0.18, I2 = 84%, random-effects) and ICU admission (RR = 0.57 (95 %CI [0.05-6.71]), I2 = 73%, p = 0.65, random-effects). Consecutive case control studies suggested that ozone therapy significantly improved levels of D-dimer (p = 0.0060), lactate dehydrogenase (LDH; p = 0.0209), C-reactive protein (CRP; p = 0.0040) and interleukin (IL)-6 (p = 0.0048) as compared to standard therapy alone.ConclusionsThe beneficial effect of ozone in COVID-19 management seems to be limited to the improvements of laboratory parameters among severe patients, including the reduction of IL-6, LDH, CRP, and D-dimer levels. Meanwhile, other study endpoints, such as mortality, length of stay and ICU admission, were not improved following ozone therapy, although it may partly be due to a shorter duration of viral clearance. Furthermore, no serious adverse event was reported following ozone therapy, suggesting its high safety profile. (PROSPERO ID: CRD42021278018).
Project description:Lactoferrin (Lf), a multifunctional cationic glycoprotein synthesized by exocrine glands and neutrophils, possesses an in vitro antiviral activity against SARS-CoV-2. Thus, we conducted an in vivo preliminary study to investigate the antiviral effect of oral and intranasal liposomal bovine Lf (bLf) in asymptomatic and mild-to-moderate COVID-19 patients. From April 2020 to June 2020, a total of 92 mild-to-moderate (67/92) and asymptomatic (25/92) COVID-19 patients were recruited and divided into three groups. Thirty-two patients (14 hospitalized and 18 in home-based isolation) received only oral and intranasal liposomal bLf; 32 hospitalized patients were treated only with standard of care (SOC) treatment; and 28, in home-based isolation, did not take any medication. Furthermore, 32 COVID-19 negative, untreated, healthy subjects were added for ancillary analysis. Liposomal bLf-treated COVID-19 patients obtained an earlier and significant (p < 0.0001) SARS-CoV-2 RNA negative conversion compared to the SOC-treated and untreated COVID-19 patients (14.25 vs. 27.13 vs. 32.61 days, respectively). Liposomal bLf-treated COVID-19 patients showed fast clinical symptoms recovery compared to the SOC-treated COVID-19 patients. In bLf-treated patients, a significant decrease in serum ferritin, IL-6, and D-dimers levels was observed. No adverse events were reported. These observations led us to speculate a potential role of bLf in the management of mild-to-moderate and asymptomatic COVID-19 patients.
Project description:Coronavirus disease-19 (COVID-19), resulting from infection with SARS-CoV-2, spans a wide spectrum of illness. In severely ill patients, highly elevated serum levels of certain cytokines and considerable cytolytic T cell infiltrates in the lungs have been observed. These same patients may bear low to negligible viral burdens suggesting that an overactive immune response, often termed cytokine storm, contributes to the severity of COVID-19. We report the safety and efficacy of baricitinib combined with remdesivir and dexamethasone in 45 hospitalized patients with COVID-19 pneumonia at a tertiary academic medical center. Retrospective review of 45 patients hospitalized with COVID-19 pneumonia. Patients received 7-day course of baricitinib, 5-day course of remdesivir and 10-day course of dexamethasone. Clinical status and biomarkers were obtained daily. Outcomes assessed include mortality, duration of hospitalization, presence of shock, need for supplemental oxygen, need for non-invasive ventilation, need for mechanical ventilation and development of thrombosis. Obesity and multiple medical comorbidities were associated with hospitalization in the setting of COVID-19. Treated patients demonstrated rapid declines of C-reactive protein (CRP), ferritin and D-dimer with gradual improvement in hemoglobin, platelet counts and clinical status. Only 2 of 45 (4.4%) treated patients required mechanical ventilation after initiating treatment and there were six deaths (13.3%).Only 2 of 45 (4.4%) treated patients required mechanical ventilation after initiating treatment. There were six deaths (13.3%) and these were associated with lower BMI. These findings support the utility of immunosuppression via JAK inhibition in moderate to severe COVID-19 pneumonia.
Project description:Coronavirus disease-19 (COVID-19), resulting from infection with SARS-CoV-2, spans a wide spectrum of illness. In severely ill patients, highly elevated serum levels of certain cytokines and considerable cytolytic T cell infiltrates in the lungs have been observed. These same patients may bear low to negligible viral burdens suggesting that an overactive immune response, often termed cytokine storm, contributes to the severity of COVID-19. We report the safety and efficacy of baricitinib combined with remdesivir and dexamethasone in a retrospective review of 45 hospitalized patients with COVID-19 pneumonia at a tertiary academic medical center. Patients received 7-day course of baricitinib, 5-day course of remdesivir, and 10-day course of dexamethasone. Clinical status and biomarkers were obtained daily. Outcomes assessed include mortality, duration of hospitalization, presence of shock, need for supplemental oxygen, need for non-invasive ventilation, need for mechanical ventilation, and development of thrombosis. Obesity and multiple medical comorbidities were associated with hospitalization in the setting of COVID-19. Treated patients demonstrated rapid declines of C-reactive protein (CRP), ferritin and D-dimer with gradual improvement in hemoglobin, platelet counts, and clinical status. Only 2 of 45 (4.4%) treated patients required mechanical ventilation after initiating treatment, and there were six deaths (13.3%). Only 2 of 45 (4.4%) treated patients required mechanical ventilation after initiating treatment. There were six deaths (13.3%) and these were associated with lower BMI. These findings support the utility of immunosuppression via JAK inhibition in moderate to severe COVID-19 pneumonia.Supplementary informationThe online version contains supplementary material available at 10.1007/s42399-022-01121-4.