Unknown

Dataset Information

0

Metagenomic Analysis of Serum Microbe-Derived Extracellular Vesicles and Diagnostic Models to Differentiate Ovarian Cancer and Benign Ovarian Tumor.


ABSTRACT: We aimed to develop a diagnostic model identifying ovarian cancer (OC) from benign ovarian tumors using metagenomic data from serum microbe-derived extracellular vesicles (EVs). We obtained serum samples from 166 patients with pathologically confirmed OC and 76 patients with benign ovarian tumors. For model construction and validation, samples were randomly divided into training and test sets in the ratio 2:1. Isolation of microbial EVs from serum samples of the patients and 16S rDNA amplicon sequencing were carried out. Metagenomic and clinicopathologic data-based OC diagnostic models were constructed in the training set and then validated in the test set. There were significant differences in the metagenomic profiles between the OC and benign ovarian tumor groups; specifically, genus Acinetobacter was significantly more abundant in the OC group. More importantly, Acinetobacter was the only common genus identified by seven different statistical analysis methods. Among the various metagenomic and clinicopathologic data-based OC diagnostic models, the model consisting of age, serum CA-125 levels, and relative abundance of Acinetobacter showed the best diagnostic performance with the area under the receiver operating characteristic curve of 0.898 and 0.846 in the training and test sets, respectively. Thus, our findings establish a metagenomic analysis of serum microbe-derived EVs as a potential tool for the diagnosis of OC.

SUBMITTER: Kim SI 

PROVIDER: S-EPMC7281409 | biostudies-literature | 2020 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Metagenomic Analysis of Serum Microbe-Derived Extracellular Vesicles and Diagnostic Models to Differentiate Ovarian Cancer and Benign Ovarian Tumor.

Kim Se Ik SI   Kang Nayeon N   Leem Sangseob S   Yang Jinho J   Jo HyunA H   Lee Maria M   Kim Hee Seung HS   Dhanasekaran Danny N DN   Kim Yoon-Keun YK   Park Taesung T   Song Yong Sang YS  

Cancers 20200521 5


We aimed to develop a diagnostic model identifying ovarian cancer (OC) from benign ovarian tumors using metagenomic data from serum microbe-derived extracellular vesicles (EVs). We obtained serum samples from 166 patients with pathologically confirmed OC and 76 patients with benign ovarian tumors. For model construction and validation, samples were randomly divided into training and test sets in the ratio 2:1. Isolation of microbial EVs from serum samples of the patients and 16S rDNA amplicon se  ...[more]

Similar Datasets

| S-EPMC9840915 | biostudies-literature
| S-EPMC7346989 | biostudies-literature
| S-EPMC8479155 | biostudies-literature
| S-EPMC6691576 | biostudies-literature
| S-EPMC9581430 | biostudies-literature
| S-EPMC7029032 | biostudies-literature
| S-EPMC11368728 | biostudies-literature
| S-EPMC7680828 | biostudies-literature
2020-01-14 | ST001307 | MetabolomicsWorkbench
| S-EPMC9330879 | biostudies-literature