Cross-Species Comparison of Fruit-Metabolomics to Elucidate Metabolic Regulation of Fruit Polyphenolics Among Solanaceous Crops.
Ontology highlight
ABSTRACT: Many solanaceous crops are an important part of the human daily diet. Fruit polyphenolics are plant specialized metabolites that are recognized for their human health benefits and their defensive role against plant abiotic and biotic stressors. Flavonoids and chlorogenates are the major polyphenolic compounds found in solanaceous fruits that vary in quantity, physiological function, and structural diversity among and within plant species. Despite their biological significance, the elucidation of metabolic shifts of polyphenols during fruit ripening in different fruit tissues, has not yet been well-characterized in solanaceous crops, especially at a cross-species and cross-cultivar level. Here, we performed a cross-species comparison of fruit-metabolomics to elucidate the metabolic regulation of fruit polyphenolics from three representative crops of Solanaceae (tomato, eggplant, and pepper), and a cross-cultivar comparison among different pepper cultivars (Capsicum annuum cv.) using liquid chromatography-mass spectrometry (LC-MS). We observed a metabolic trade-off between hydroxycinnamates and flavonoids in pungent pepper and anthocyanin-type pepper cultivars and identified metabolic signatures of fruit polyphenolics in each species from each different tissue-type and fruit ripening stage. Our results provide additional information for metabolomics-assisted crop improvement of solanaceous fruits towards their improved nutritive properties and enhanced stress tolerance.
SUBMITTER: Calumpang CLF
PROVIDER: S-EPMC7281770 | biostudies-literature | 2020 May
REPOSITORIES: biostudies-literature
ACCESS DATA