Unknown

Dataset Information

0

Multidrug-Resistant Pseudomonas aeruginosa Evokes Differential Inflammatory Responses in Human Microglial and Retinal Pigment Epithelial Cells.


ABSTRACT: Increasing incidences of multidrug-resistant (MDR) pathogens causing endophthalmitis threaten our ability to treat this condition, and the modulation of inflammatory responses by MDR bacteria is not known. In this study, using human microglia and retinal pigment epithelial (RPE) cells, we compare the inflammatory responses of sensitive (S-PA) and multidrug-resistant (MDR-PA) clinical isolates of Pseudomonas aeruginosa. Infected cells were subjected to qPCR analysis, enzyme-linked immunosorbent assay (ELISA), and immunostaining to assess the expression of inflammatory mediators. Both microglia and RPE cells, challenged with S-PA and MDR-PA, induced a time-dependent expression of inflammatory cytokines. Significant differences were observed in expression levels of Toll-like receptors (TLR) TLR4, TLR5, and TLR9 in microglia cells challenged with MDR-PA vs. S-PA. Similarly, mRNA levels of interleukin (IL)-6, tumor necrosis factor (TNF)-?, Interferon (IFN)-?, and matrix metalloproteinase (MMP)-9 were also higher in MDR-PA-infected cells. At protein levels, upregulation was observed for IL-10 (p = 0.004), IL-8 (p = 0.0006), IL-1? (p = 0.02), and Granulocyte-macrophage colony-stimulating factor (GM-CSF) (p = 0.0006) in cells infected MDR-PA versus S-PA in both microglia and RPE cells; however, the response was delayed in RPE cells. Heatmap and STRING analysis highlighted the existence of a cross-talk between the inflammatory and cytokine-mediated signaling pathways. Our study highlights a differential inflammatory response evoked by MDR vs. sensitive pathogens in retinal cells during endophthalmitis.

SUBMITTER: Naik P 

PROVIDER: S-EPMC7285153 | biostudies-literature | 2020 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Multidrug-Resistant <i>Pseudomonas aeruginosa</i> Evokes Differential Inflammatory Responses in Human Microglial and Retinal Pigment Epithelial Cells.

Naik Poonam P   Singh Sukhvinder S   Vishwakarma Sushma S   Kaur Inderjeet I   Dave Vivek Pravin VP   Kumar Ashok A   Joseph Joveeta J  

Microorganisms 20200514 5


Increasing incidences of multidrug-resistant (MDR) pathogens causing endophthalmitis threaten our ability to treat this condition, and the modulation of inflammatory responses by MDR bacteria is not known. In this study, using human microglia and retinal pigment epithelial (RPE) cells, we compare the inflammatory responses of sensitive (S-<i>PA</i>) and multidrug-resistant (MDR-<i>PA</i>) clinical isolates of <i>Pseudomonas aeruginosa</i>. Infected cells were subjected to qPCR analysis, enzyme-l  ...[more]

Similar Datasets

| S-EPMC6182868 | biostudies-literature
| S-EPMC3209233 | biostudies-literature
| S-EPMC5726472 | biostudies-literature
| S-EPMC5038228 | biostudies-literature
| S-EPMC1829129 | biostudies-literature
| S-EPMC5923287 | biostudies-literature
| S-EPMC6684008 | biostudies-literature
| S-EPMC5328537 | biostudies-literature
| S-EPMC8359789 | biostudies-literature