Unknown

Dataset Information

0

Inhibition of circulating exosomal microRNA-15a-3p accelerates diabetic wound repair.


ABSTRACT: Diabetic foot ulcers are a common complication of diabetes, and are usually incurable in the clinic. Exosomes (carriers that transfer endogenous molecules) from diabetic patients' blood have been demonstrated to suppress diabetic wound repair. In this study, we investigated the effects of circulating exosomal microRNA-15a-3p (miR-15a-3p) on diabetic wound repair. Exosomes were extracted from diabetic patients' blood, and were found to inhibit diabetic wound repair in vitro and in vivo. miR-15a-3p was upregulated in diabetic exosomes, and impaired wound healing. When miR-15a-3p was knocked down in diabetic exosomes, their negative effects were partially reversed both in vitro and in vivo. NADPH oxidase 5 (NOX5) was identified as a potential target of miR-15a-3p, and the inhibition of NOX5 reduced the release of reactive oxygen species, thereby impairing the functionality of human umbilical vein endothelial cells. In summary, inhibition of circulating exosomal miR-15a-3p accelerated diabetic wound repair by activating NOX5, providing a novel therapeutic target for diabetic foot ulcer therapy.

SUBMITTER: Xiong Y 

PROVIDER: S-EPMC7288917 | biostudies-literature | 2020 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Inhibition of circulating exosomal microRNA-15a-3p accelerates diabetic wound repair.

Xiong Yuan Y   Chen Lang L   Yu Tao T   Yan Chenchen C   Zhou Wu W   Cao Faqi F   You Xiaomeng X   Zhang Yingqi Y   Sun Yun Y   Liu Jing J   Xue Hang H   Hu Yiqiang Y   Chen Dong D   Mi Bobin B   Liu Guohui G  

Aging 20200521 10


Diabetic foot ulcers are a common complication of diabetes, and are usually incurable in the clinic. Exosomes (carriers that transfer endogenous molecules) from diabetic patients' blood have been demonstrated to suppress diabetic wound repair. In this study, we investigated the effects of circulating exosomal microRNA-15a-3p (miR-15a-3p) on diabetic wound repair. Exosomes were extracted from diabetic patients' blood, and were found to inhibit diabetic wound repair <i>in vitro</i> and <i>in vivo<  ...[more]

Similar Datasets

| S-EPMC7467375 | biostudies-literature
| S-EPMC5649125 | biostudies-literature
| S-EPMC4237249 | biostudies-other
| S-EPMC8643265 | biostudies-literature
| S-EPMC5858170 | biostudies-literature
| S-EPMC7214920 | biostudies-literature
| S-EPMC7377889 | biostudies-literature
| S-EPMC1892363 | biostudies-literature
| S-EPMC10474114 | biostudies-literature
| S-EPMC4521828 | biostudies-literature