Unknown

Dataset Information

0

The HRI-regulated transcription factor ATF4 activates BCL11A transcription to silence fetal hemoglobin expression.


ABSTRACT: Reactivation of fetal hemoglobin remains a critical goal in the treatment of patients with sickle cell disease and β-thalassemia. Previously, we discovered that silencing of the fetal γ-globin gene requires the erythroid-specific eIF2α kinase heme-regulated inhibitor (HRI), suggesting that HRI might present a pharmacologic target for raising fetal hemoglobin levels. Here, via a CRISPR-Cas9-guided loss-of-function screen in human erythroblasts, we identify transcription factor ATF4, a known HRI-regulated protein, as a novel γ-globin regulator. ATF4 directly stimulates transcription of BCL11A, a repressor of γ-globin transcription, by binding to its enhancer and fostering enhancer-promoter contacts. Notably, HRI-deficient mice display normal Bcl11a levels, suggesting species-selective regulation, which we explain here by demonstrating that the analogous ATF4 motif at the murine Bcl11a enhancer is largely dispensable. Our studies uncover a linear signaling pathway from HRI to ATF4 to BCL11A to γ-globin and illustrate potential limits of murine models of globin gene regulation.

SUBMITTER: Huang P 

PROVIDER: S-EPMC7290097 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2020-04-17 | GSE143963 | GEO
2020-04-17 | GSE143962 | GEO
2020-04-17 | GSE143961 | GEO
| PRJNA602341 | ENA
| PRJNA602344 | ENA
| PRJNA602343 | ENA
| S-EPMC4705561 | biostudies-literature
| S-EPMC8556680 | biostudies-literature
| S-EPMC4778394 | biostudies-literature
| S-EPMC3631619 | biostudies-literature