Unknown

Dataset Information

0

Impact of the Gut Microbiota on Atorvastatin Mediated Effects on Blood Lipids.


ABSTRACT: BACKGROUND AND AIMS:The mechanisms of interindividual variation of lipid regulation by statins, such as the low-density lipoprotein cholesterol (LDL) lowering effects, are not fully understood yet. Here, we used a gut microbiota depleted mouse model to investigate the relation between the gut microbiota and the regulatory property of atorvastatin on blood lipids. METHODS:Mice (C57BL/6) with intact gut microbiota or antibiotic induced abiotic mice (ABS) were put on standard chow diet (SCD) or high fat diet (HFD) for six weeks. Atorvastatin (10 mg/kg body weight/day) or a control vehicle were applied per gavage for the last four weeks of dietary treatment. Blood lipids including total cholesterol, very low-density lipoprotein, low-density lipoprotein, high-density lipoprotein and sphingolipids were measured to probe microbiota-dependent effects of atorvastatin. The expression of genes involved in hepatic and intestinal cholesterol metabolism was analyzed with qRT-PCR. The alteration of the microbiota profile was examined using 16S rRNA qPCR in mice with intact gut microbiota. RESULTS:HFD feeding significantly increased total blood cholesterol and LDL levels, as compared to SCD in both mice with intact and depleted gut microbiota. The cholesterol lowering effect of atorvastatin was significantly attenuated in mice with depleted gut microbiota. Moreover, we observed a global shift in the abundance of several sphingolipids upon atorvastatin treatment which was absent in gut microbiota depleted mice. The regulatory effect of atorvastatin on the expression of distinct hepatic and intestinal cholesterol-regulating genes, including Ldlr, Srebp2 and Npc1l1 was altered upon depletion of gut microbiota. In response to HFD feeding, the relative abundance of the bacterial phyla Bacteroidetes decreased, while the abundance of Firmicutes increased. The altered ratio between Firmicutes to Bacteroidetes was partly reversed in HFD fed mice treated with atorvastatin. CONCLUSIONS:Our findings support a regulatory impact of atorvastatin on the gut microbial profile and, in turn, demonstrate a crucial role of the gut microbiome for atorvastatin-related effects on blood lipids. These results provide novel insights into potential microbiota-dependent mechanisms of lipid regulation by statins, which may account for variable response to statin treatment.

SUBMITTER: Zimmermann F 

PROVIDER: S-EPMC7290826 | biostudies-literature | 2020 May

REPOSITORIES: biostudies-literature

altmetric image

Publications


<h4>Background and aims</h4>The mechanisms of interindividual variation of lipid regulation by statins, such as the low-density lipoprotein cholesterol (LDL) lowering effects, are not fully understood yet. Here, we used a gut microbiota depleted mouse model to investigate the relation between the gut microbiota and the regulatory property of atorvastatin on blood lipids.<h4>Methods</h4>Mice (C57BL/6) with intact gut microbiota or antibiotic induced abiotic mice (ABS) were put on standard chow di  ...[more]

Similar Datasets

| S-EPMC10948407 | biostudies-literature
2019-08-05 | GSE131785 | GEO
| S-EPMC7290464 | biostudies-literature
2024-11-04 | GSE280960 | GEO
| S-EPMC6676565 | biostudies-literature
| S-EPMC8697019 | biostudies-literature
| S-EPMC6458072 | biostudies-literature
2022-08-17 | GSE198570 | GEO
| S-EPMC5766553 | biostudies-literature
| S-EPMC6357048 | biostudies-literature