Unknown

Dataset Information

0

In silico and in vitro identification of secoisolariciresinol as a re-sensitizer of P-glycoprotein-dependent doxorubicin-resistance NCI/ADR-RES cancer cells.


ABSTRACT: P-glycoprotein (P-gp) is one of the highly expressed cancer cell efflux transporters that cause the failure of chemotherapy. To reverse P-gp induced multidrug resistance, we employed a flaxseed-derived lignan; secoisolariciresinol (SECO) that acts as an inhibitor of breast cancer resistance protein; another efflux transporter that shares some substrate/inhibitor specificity with P-gp. Molecular dynamics (MD) simulation identified SECO as a possible P-gp inhibitor. Comparing root mean square deviation (RMSD) of P-gp bound with SECO with that bound to its standard inhibitor verapamil showed that fluctuations in RMSD were lower in P-gp bound to SECO demonstrating higher stability of the complex of P-gp with SECO. In addition, the superimposition of P-gp structures after MD simulation showed that the nucleotide-binding domains of P-gp bound to SECO undertook a more central closer position compared with that bound to verapamil. Using rhodamine efflux assay on NCI/ADR-RES cancer cells, SECO was confirmed as a P-gp inhibitor, where cells treated with 25 or 50 µM of SECO showed significantly higher fluorescence intensity compared to control. Using MTT assay, SECO alone showed dose-dependent cytotoxicity, where 25 or 50 µM of SECO caused significantly less NCI/ADR-RES cellular viability compared to control. Furthermore, when 50 µM of SECO was added to doxorubicin (DOX), an anticancer drug, SECO significantly enhanced DOX-induced cytotoxicity compared to DOX alone. The combination index calculated by CompuSyn software indicated synergism between DOX and SECO. Our results suggest SECO as a novel P-gp inhibitor that can re-sensitize cancer cells during DOX chemotherapy.

SUBMITTER: Morsy MA 

PROVIDER: S-EPMC7293189 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

In silico and in vitro identification of secoisolariciresinol as a re-sensitizer of P-glycoprotein-dependent doxorubicin-resistance NCI/ADR-RES cancer cells.

Morsy Mohamed A MA   El-Sheikh Azza A K AAK   Ibrahim Ahmed R N ARN   Venugopala Katharigatta N KN   Kandeel Mahmoud M  

PeerJ 20200610


P-glycoprotein (P-gp) is one of the highly expressed cancer cell efflux transporters that cause the failure of chemotherapy. To reverse P-gp induced multidrug resistance, we employed a flaxseed-derived lignan; secoisolariciresinol (SECO) that acts as an inhibitor of breast cancer resistance protein; another efflux transporter that shares some substrate/inhibitor specificity with P-gp. Molecular dynamics (MD) simulation identified SECO as a possible P-gp inhibitor. Comparing root mean square devi  ...[more]

Similar Datasets

| S-EPMC9659291 | biostudies-literature
| S-EPMC5757493 | biostudies-literature
| S-EPMC5007212 | biostudies-literature
2020-08-22 | GSE136201 | GEO
2023-02-12 | PXD031629 | JPOST Repository
| S-EPMC7014471 | biostudies-literature
| S-EPMC4372005 | biostudies-literature
| S-EPMC10866941 | biostudies-literature
| S-EPMC5788630 | biostudies-literature
| S-EPMC8238779 | biostudies-literature