Polymeric Films for the Encapsulation, Storage, and Tunable Release of Therapeutic Microbes.
Ontology highlight
ABSTRACT: Microbe-based therapeutics (MBTs) are an emerging therapeutic modality for treating gastrointestinal infections and inflammatory bowel diseases. Current formulations for oral delivery of MBTs use capsules to achieve safe gastric transit, but oral formulations that control the spatiotemporal concentration of MBTs are yet to be developed, despite well-established connections between all therapeutics and their location, concentration, and distribution at sites of action. The development of a multi-functional polymer-based encapsulation system to formulate MBTs for enhanced storage and delivery through formulation of a model MBT, Lactobacillus casei ATCC393, is reported here. This approach enables the additive inclusion of excipients and polymers to grant specific functions, toward the development of a modular MBT platform. Through addition of established excipients, the formulation provides long-term storage of the encapsulated MBT. By adding higher molecular weight polymers, the release kinetics of the encapsulated MBTs can be modified. The inclusion of a mucoadhesive polymer significantly increases the adhesion force between the formulation and the intestinal tissue. Together, mucoadhesive and sustained release properties can be used to modulate the spatiotemporal concentration of MBTs. The formulation is compatible with standard oral capsules, thus maintaining existing clinical advantages of oral capsules while providing new functions from film encapsulation.
SUBMITTER: Qiu K
PROVIDER: S-EPMC7293827 | biostudies-literature | 2020 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA