Phenotypic and Genomic Characterization of Virulence Heterogeneity in Multidrug-Resistant ST11 Klebsiella pneumoniae During Inter-Host Transmission and Evolution.
Ontology highlight
ABSTRACT: Background:Multidrug-resistant (MDR) ST11 hypervirulent Klebsiella pneumoniae (hvKp) is emerging in China. Purpose:The aim of this study was to track the transmission and evolution of hvKp. Materials and Methods:A retrospective study focused on Kp infection was conducted. Clinical data were collected from electronic medical records. Whole-genome sequencing of Kp strains was performed. Single-nucleotide polymorphisms (SNPs) were analyzed and a transmission map was constructed. Sequence type, and antimicrobial and virulence-associated genes were characterized. Strains with some combination of the virulence genes, prmpA, prmpA2, iucA, iroB, and peg-344, were defined as hvKp. Kp virulence phenotypes were evaluated using the Galleria mellonella model. Results:All 33 Kp strains were MDR-Kp and 13 (39.4%) were hvKp. Most hvKp strains (84.6%, 11/13) were hospital-acquired infections (HAIs). Two unique combinations of virulence-associated genes were detected among hvKp strains. Eleven cases were associated with prmpA2+iucA and two strains presented with peg-344+ prmpA+ prmpA2+iucA. Surprisingly, two community-acquired MDR-hvKp infection cases were identified. Eight hvKp strains (61.5%, 8/13) exhibited a hypervirulent phenotype in the G. mellonella model. Five MDR-hvKp strains with the hypervirulence phenotype originated from a single cluster. Additionally, nine clones were identified among the two clades, six of which were hvKp. Moreover, the hvKp in clade 1 carried the IncHI1B plasmid replicon, whereas none of the hvKp strains in clade 2 harbored IncHI1B. These data, showing that different hvKp clones distributed into separate clades, indicate that transmission and evolution occurred within the hospital. Conclusion:During inter-host evolution and transmission, various virulence clusters of the epidemic clone, MDR-ST11, converged, conferring phenotypic virulence heterogeneity and spread within the hospital and possibly the community. Mobile/conjugative genetic elements associated with virulence-encoding gene clusters might emerge and have been transmitted within the hospital, suggesting that enhanced ongoing surveillance is essential.
SUBMITTER: Liu C
PROVIDER: S-EPMC7293908 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA