Unknown

Dataset Information

0

Combined ground and aerial measurements resolve vent-specific gas fluxes from a multi-vent volcano.


ABSTRACT: Volcanoes with multiple summit vents present a methodological challenge for determining vent-specific gas emissions. Here, using a novel approach combining multiple ultraviolet cameras with synchronous aerial measurements, we calculate vent-specific gas compositions and fluxes for Stromboli volcano. Emissions from vent areas are spatially heterogeneous in composition and emission rate, with the central vent area dominating passive emissions, despite exhibiting the least explosive behaviour. Vents exhibiting Strombolian explosions emit low to negligible passive fluxes and are CO2-dominated, even during passive degassing. We propose a model for the conduit system based on contrasting rheological properties between vent areas. Our methodology has advantages for resolving contrasting outgassing dynamics given that measured bulk plume compositions are often intermediate between those of the distinct vent areas. We therefore emphasise the need for a vent-specific approach at multi-vent volcanoes and suggest that our approach could provide a transformative advance in volcano monitoring applications.

SUBMITTER: Pering TD 

PROVIDER: S-EPMC7298010 | biostudies-literature | 2020 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Combined ground and aerial measurements resolve vent-specific gas fluxes from a multi-vent volcano.

Pering T D TD   Liu E J EJ   Wood K K   Wilkes T C TC   Aiuppa A A   Tamburello G G   Bitetto M M   Richardson T T   McGonigle A J S AJS  

Nature communications 20200616 1


Volcanoes with multiple summit vents present a methodological challenge for determining vent-specific gas emissions. Here, using a novel approach combining multiple ultraviolet cameras with synchronous aerial measurements, we calculate vent-specific gas compositions and fluxes for Stromboli volcano. Emissions from vent areas are spatially heterogeneous in composition and emission rate, with the central vent area dominating passive emissions, despite exhibiting the least explosive behaviour. Vent  ...[more]

Similar Datasets

| S-EPMC7608812 | biostudies-literature
| S-EPMC4321539 | biostudies-literature
| S-EPMC5405577 | biostudies-literature
| S-EPMC5012119 | biostudies-literature
| S-EPMC7227294 | biostudies-literature
| S-EPMC3741630 | biostudies-literature
| S-EPMC4528598 | biostudies-literature
| S-EPMC3737124 | biostudies-literature
| S-EPMC4767435 | biostudies-literature
| S-EPMC4642548 | biostudies-literature