Unknown

Dataset Information

0

Extraction of Cell-free Dna from An Embryo-culture Medium Using Micro-scale Bio-reagents on Ewod.


ABSTRACT: As scientific and technical knowledge advances, research on biomedical micro-electromechanical systems (bio-MEMS) is also developing towards lab-on-a-chip (LOC) devices. A digital microfluidic (DMF) system specialized for an electrowetting- on-dielectric (EWOD) mechanism is a promising technique for such point-of-care systems. EWOD microfluidic biochemical analytical systems provide applications over a broad range in the lab-on-a-chip field. In this report, we treated extraction of cell-free DNA (cf-DNA) at a small concentration from a mouse embryo culture medium (2.5 days & 3.5 days) with electro-wetting on a dielectric (EWOD) platform using bio-reagents of micro-scale quantity. For such extraction, we modified a conventional method of genomic-DNA (g-DNA) extraction using magnetic beads (MB). To prove that extraction of cf-DNA with EWOD was accomplished, as trials we extracted designed-DNA (obtained from Chang Gung Memorial Hospital (CGMH), Taiwan which shows properties similar to that of cf-DNA). Using that designed DNA, extraction with both conventional and EWOD methods has been performed; the mean percentage of extraction with both methods was calculated for a comparison. From the cycle threshold (Ct) results with a quantitative polymerase chain reaction (q-PCR), the mean extraction percentages were obtained as 14.8 percent according to the conventional method and 23 percent with EWOD. These results show that DNA extraction with EWOD appears promising. The EWOD extraction involved voltage 100?V and frequency 2?kHz. From this analysis, we generated a protocol for an improved extraction percentage on a EWOD chip and performed cf-DNA extraction from an embryo-culture medium (KSOM medium) at 3.5 and 2.5 days. The mean weight obtained for EWOD-extracted cf-DNA is 0.33 fg from the 3.5-day sample and 31.95 fg from the 2.5-day sample. All these results will pave a new path towards a renowned lab-on-a-chip concept.

SUBMITTER: Alias AB 

PROVIDER: S-EPMC7298037 | biostudies-literature | 2020 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Extraction of Cell-free Dna from An Embryo-culture Medium Using Micro-scale Bio-reagents on Ewod.

Alias Anand Baby AB   Chiang Cheng-En CE   Huang Hong-Yuan HY   Lin Kai-Ti KT   Lu Pei-Jhen PJ   Wang Yi-Wen YW   Wu Tzu-Hui TH   Jiang Pei-Shin PS   Chen Chien-An CA   Yao Da-Jeng DJ  

Scientific reports 20200616 1


As scientific and technical knowledge advances, research on biomedical micro-electromechanical systems (bio-MEMS) is also developing towards lab-on-a-chip (LOC) devices. A digital microfluidic (DMF) system specialized for an electrowetting- on-dielectric (EWOD) mechanism is a promising technique for such point-of-care systems. EWOD microfluidic biochemical analytical systems provide applications over a broad range in the lab-on-a-chip field. In this report, we treated extraction of cell-free DNA  ...[more]

Similar Datasets

| S-EPMC6778057 | biostudies-literature
| S-EPMC4489852 | biostudies-literature
| S-EPMC7190856 | biostudies-literature
| S-EPMC10249307 | biostudies-literature
| S-EPMC10459807 | biostudies-literature
| S-EPMC9214662 | biostudies-literature
| S-EPMC5949098 | biostudies-literature
| S-EPMC8667117 | biostudies-literature
| S-EPMC6242932 | biostudies-literature
| S-EPMC9730522 | biostudies-literature