Bovine Dialyzable Leukocyte Extract IMMUNEPOTENT-CRP Induces Selective ROS-Dependent Apoptosis in T-Acute Lymphoblastic Leukemia Cell Lines.
Ontology highlight
ABSTRACT: Immunotherapies strengthen the immune system to fight multiple diseases such as infections, immunodeficiencies, and autoimmune diseases, and recently, they are being used as an adjuvant in cancer treatment. IMMUNEPOTENT-CRP (I-CRP) is an immunotherapy made of bovine dialyzable leukocyte extract (bDLE) that has chemoprotective and immunomodulatory effects in different cellular populations of the immune system and antitumor activity in different cancer cell lines. Our recent results suggest that the antineoplastic effect of I-CRP is due to the characteristics of cancer cells. To confirm, we evaluated whether the selectivity is due to cell lineage or characteristics of cancer cells, testing cytotoxicity in T-acute lymphoblastic leukemia cells and their cell death mechanism. Here, we assessed the effect of I-CRP on cell viability and cell death. To determine the mechanism of cell death, we tested cell cycle, mitochondrial and nuclear alterations, and caspases and reactive oxygen species (ROS) and their role in cell death mechanism. Our results show that I-CRP does not affect cell viability in noncancer cells and induces selective cytotoxicity in a dose-dependent manner in leukemic cell lines. I-CRP also induces mitochondrial damage through proapoptotic and antiapoptotic protein modulation (Bax and Bcl-2) and ROS production, nuclear alterations including DNA damage (?-H2Ax), overexpression of p53, cell cycle arrest, and DNA degradation. I-CRP induced ROS-dependent apoptosis in leukemic cells. Overall, here, we show that I-CRP cytotoxicity is selective to leukemic cells, inducing ROS-dependent apoptosis. This research opens the door to further exploration of their role in the immune system and the cell death mechanism that could potentially work in conjunction with other therapies including hematological malignances.
SUBMITTER: Lorenzo-Anota HY
PROVIDER: S-EPMC7298273 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA