Unknown

Dataset Information

0

Pancreatic islets engineered with a FasL protein induce systemic tolerance at the induction phase that evolves into long-term graft-localized immune privilege.


ABSTRACT: We have previously shown that pancreatic islets engineered to transiently display a modified form of FasL protein (SA-FasL) on their surface survive indefinitely in allogeneic recipients without a need for chronic immunosuppression. Mechanisms that confer long-term protection to allograft are yet to be elucidated. We herein demonstrated that immune protection evolves in two distinct phases; induction and maintenance. SA-FasL-engineered allogeneic islets survived indefinitely and conferred protection to a second set of donor-matched, but not third-party, unmanipulated islet grafts simultaneously transplanted under the contralateral kidney capsule. Protection at the induction phase involved a reduction in the frequency of proliferating alloreactive T cells in the graft-draining lymph nodes, and required phagocytes and TGF-?. At the maintenance phase, immune protection evolved into graft site-restricted immune privilege as the destruction of long-surviving SA-FasL-islet grafts by streptozotocin followed by the transplantation of a second set of unmanipulated islet grafts into the same site from the donor, but not third party, resulted in indefinite survival. The induced immune privilege required both CD4+ CD25+ Foxp3+ Treg cells and persistent presence of donor antigens. Engineering cell and tissue surfaces with SA-FasL protein provides a practical, efficient, and safe means of localized immunomodulation with important implications for autoimmunity and transplantation.

SUBMITTER: Woodward KB 

PROVIDER: S-EPMC7299172 | biostudies-literature | 2020 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Pancreatic islets engineered with a FasL protein induce systemic tolerance at the induction phase that evolves into long-term graft-localized immune privilege.

Woodward Kyle B KB   Zhao Hong H   Shrestha Pradeep P   Batra Lalit L   Tan Min M   Grimany-Nuno Orlando O   Bandura-Morgan Laura L   Askenasy Nadir N   Shirwan Haval H   Yolcu Esma S ES  

American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 20200105 5


We have previously shown that pancreatic islets engineered to transiently display a modified form of FasL protein (SA-FasL) on their surface survive indefinitely in allogeneic recipients without a need for chronic immunosuppression. Mechanisms that confer long-term protection to allograft are yet to be elucidated. We herein demonstrated that immune protection evolves in two distinct phases; induction and maintenance. SA-FasL-engineered allogeneic islets survived indefinitely and conferred protec  ...[more]

Similar Datasets

| S-EPMC3232043 | biostudies-literature
| S-EPMC6331284 | biostudies-literature
| S-EPMC2409242 | biostudies-literature
| S-EPMC3869180 | biostudies-literature
| S-EPMC6419712 | biostudies-literature
| S-EPMC7773406 | biostudies-literature
| S-EPMC10515087 | biostudies-literature
| S-EPMC3175037 | biostudies-literature
| S-EPMC9746345 | biostudies-literature
| S-EPMC9106299 | biostudies-literature