Unknown

Dataset Information

0

Alternative catalytic residues in the active site of Esco acetyltransferases.


ABSTRACT: Cohesin is a protein complex whose core subunits, Smc1, Smc3, Scc1, and SA1/SA2 form a ring-like structure encircling the DNA. Cohesins play a key role in the expression, repair, and segregation of eukaryotic genomes. Following a catalytic mechanism that is insufficiently understood, Esco1 and Esco2 acetyltransferases acetylate the cohesin subunit Smc3, thereby inducing stabilization of cohesin on DNA. As a prerequisite for structure-guided investigation of enzymatic activity, we determine here the crystal structure of the mouse Esco2/CoA complex at 1.8?Å resolution. We reconstitute cohesin as tri- or tetrameric assemblies and use those as physiologically-relevant substrates for enzymatic assays in vitro. Furthermore, we employ cell-based complementation studies in mouse embryonic fibroblast deficient for Esco1 and Esco2, as a means to identify catalytically-important residues in vivo. These analyses demonstrate that D567/S566 and E491/S527, located on opposite sides of the murine Esco2 active site cleft, are critical for catalysis. Our experiments support a catalytic mechanism of acetylation where residues D567 and E491 are general bases that deprotonate the ?-amino group of lysine substrate, also involving two nearby serine residues - S566 and S527- that possess a proton relay function.

SUBMITTER: Ajam T 

PROVIDER: S-EPMC7300003 | biostudies-literature | 2020 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Alternative catalytic residues in the active site of Esco acetyltransferases.

Ajam Tahereh T   De Inessa I   Petkau Nikolai N   Whelan Gabriela G   Pena Vladimir V   Eichele Gregor G  

Scientific reports 20200617 1


Cohesin is a protein complex whose core subunits, Smc1, Smc3, Scc1, and SA1/SA2 form a ring-like structure encircling the DNA. Cohesins play a key role in the expression, repair, and segregation of eukaryotic genomes. Following a catalytic mechanism that is insufficiently understood, Esco1 and Esco2 acetyltransferases acetylate the cohesin subunit Smc3, thereby inducing stabilization of cohesin on DNA. As a prerequisite for structure-guided investigation of enzymatic activity, we determine here  ...[more]

Similar Datasets

| S-EPMC3722577 | biostudies-literature
| S-EPMC9138182 | biostudies-literature
| S-EPMC1134988 | biostudies-literature
| S-EPMC3089530 | biostudies-literature
| S-EPMC1184567 | biostudies-literature
| S-EPMC2847678 | biostudies-literature
| S-EPMC8023669 | biostudies-literature
| S-EPMC5702671 | biostudies-literature
| S-EPMC2444009 | biostudies-literature
2019-07-24 | GSE132205 | GEO