Unknown

Dataset Information

0

Protein-Folding Analysis Using Features Obtained by Persistent Homology.


ABSTRACT: Understanding the protein-folding process is an outstanding issue in biophysics; recent developments in molecular dynamics simulation have provided insights into this phenomenon. However, the large freedom of atomic motion hinders the understanding of this process. In this study, we applied persistent homology, an emerging method to analyze topological features in a data set, to reveal protein-folding dynamics. We developed a new, to our knowledge, method to characterize the protein structure based on persistent homology and applied this method to molecular dynamics simulations of chignolin. Using principle component analysis or nonnegative matrix factorization, our analysis method revealed two stable states and one saddle state, corresponding to the native, misfolded, and transition states, respectively. We also identified an unfolded state with slow dynamics in the reduced space. Our method serves as a promising tool to understand the protein-folding process.

SUBMITTER: Ichinomiya T 

PROVIDER: S-EPMC7300307 | biostudies-literature | 2020 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Protein-Folding Analysis Using Features Obtained by Persistent Homology.

Ichinomiya Takashi T   Obayashi Ippei I   Hiraoka Yasuaki Y  

Biophysical journal 20200505 12


Understanding the protein-folding process is an outstanding issue in biophysics; recent developments in molecular dynamics simulation have provided insights into this phenomenon. However, the large freedom of atomic motion hinders the understanding of this process. In this study, we applied persistent homology, an emerging method to analyze topological features in a data set, to reveal protein-folding dynamics. We developed a new, to our knowledge, method to characterize the protein structure ba  ...[more]

Similar Datasets

| S-EPMC4131872 | biostudies-literature
| S-EPMC8281920 | biostudies-literature
| S-EPMC7005716 | biostudies-literature
| S-EPMC263785 | biostudies-literature
| S-EPMC6361896 | biostudies-other
| S-EPMC5996898 | biostudies-literature
| S-EPMC6769309 | biostudies-literature
| S-EPMC4685963 | biostudies-literature
| S-EPMC2656149 | biostudies-literature
| S-EPMC3415417 | biostudies-literature