Project description:Diaphragm muscles in Chronic Obstructive Pulmonary Disease (COPD) patients undergo an adaptive fast to slow transformation that includes cellular adaptations. This project studies the signaling mechanisms responsible for this transformation. Keywords: other
Project description:Investigation of whole genome gene expression level changes of the dynamic gene profiling of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD) on day1, 3 and 10, compared to the normal people and stable COPD patients. A five chip study using total RNA recovered from Peripheral Blood Mononuclear Cell of Peripheral Blood.Evaluating the dynamic gene profiling of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD) on day1, 3 and 10 after the hospital admission, to compared with healthy controls or patients with stable COPD. Slides were scanned at 5 μm/pixel resolution using an Axon GenePix 4000B scanner (Molecular Devices Corporation) piloted by GenePix Pro 6.0 software (Axon). Scanned images (TIFF format) were then imported into NimbleScan software (version 2.5) for grid alignment and expression data analysis. Expression data were normalized through quantile normalization and the Robust Multichip Average (RMA) algorithm included in the NimbleScan software. The Probe level (*_norm_RMA.pair) files and Gene level (*_RMA.calls) files were generated after normalization.
Project description:Investigation of whole genome gene expression level changes of the dynamic gene profiling of peripheral blood mononuclear cells (PBMCs) from patients with AECOPD) on day1, 3 and 10, compared to the normal people and stable COPD patients.
Project description:BACKGROUND:Guidelines recommend that treatment with a long-acting β2 agonist (LABA), a long-acting muscarinic antagonist (LAMA), and inhaled corticosteroids (ICS), i.e. triple therapy, is reserved for a select group of symptomatic patients with chronic obstructive pulmonary disease (COPD) who continue to exacerbate despite treatment with dual therapy (LABA/LAMA). A number of single-inhaler triple therapies are now available and important clinical questions remain over their role in the patient pathway. We compared the efficacy and safety of single-inhaler triple therapy to assess the magnitude of benefit and to identify patients with the best risk-benefit profile for treatment. We also evaluated and compared study designs and population characteristics to assess the strength of the evidence base. METHODS:We conducted a systematic search, from inception to December 2018, of randomised controlled trials (RCTs) of single-inhaler triple therapy in patients with COPD. The primary outcome was the annual rate of moderate and severe exacerbations. RESULTS:We identified 523 records, of which 15 reports/abstracts from six RCTs were included. Triple therapy resulted in the reduction of the annual rate of moderate or severe exacerbations in the range of 15-52% compared with LAMA/LABA, 15-35% compared to LABA/ICS and 20% compared to LAMA. The patient-based number needed to treat for the moderate or severe exacerbation outcome ranged between approximately 25-50 (preventing one patient from having an event) and the event-based number needed to treat of around 3-11 (preventing one event). The absolute benefit appeared to be greater in patients with higher eosinophil counts or historical frequency of exacerbations and ex-smokers. In the largest study, there was a significantly higher incidence of pneumonia in the triple therapy arm. There were important differences in study designs and populations impacting the interpretation of the results and indicating there would be significant heterogeneity in cross-trial comparisons. CONCLUSION:The decision to prescribe triple therapy should consider patient phenotype, magnitude of benefit and increased risk of adverse events. Future research on specific patient phenotype thresholds that can support treatment and funding decisions is now required from well-designed, robust, clinical trials. TRIAL REGISTRATION:PROSPERO #CRD42018102125 .
Project description:Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease with complex pathological features and largely unknown etiologies. Identification and validation of biomarkers for this disease could facilitate earlier diagnosis, appreciation of disease subtypes and/or determination of response to therapeutic intervention. To identify gene expression markers for COPD, we performed genome-wide expression profiling of lung tissue from 56 subjects using the Affymetrix U133 Plus 2.0 array. Lung function measurements from these subjects ranged from normal, un-obstructed to severely obstructed. Analysis of differential expression between cases (FEV1<70%, FEV1/FVC<0.7) and controls (FEV1>80%, FEV1/FVC>0.7) identified a set of 65 probe sets representing discrete markers associated with COPD. Correlation of gene expression with quantitative measures of airflow obstruction (FEV1 or FEV1/FVC) identified a set of 220 probe sets. A total of 31 probe sets were identified that showed evidence of significant correlation with quantitative traits and differential expression between cases and controls. Keywords: Disease state marker
Project description:Chronic obstructive pulmonary disease (COPD) is characterised by progressive airflow obstruction that is only partly reversible, inflammation in the airways, and systemic effects or comorbities. The main cause is smoking tobacco, but other factors have been identified. Several pathobiological processes interact on a complex background of genetic determinants, lung growth, and environmental stimuli. The disease is further aggravated by exacerbations, particularly in patients with severe disease, up to 78% of which are due to bacterial infections, viral infections, or both. Comorbidities include ischaemic heart disease, diabetes, and lung cancer. Bronchodilators constitute the mainstay of treatment: β(2) agonists and long-acting anticholinergic agents are frequently used (the former often with inhaled corticosteroids). Besides improving symptoms, these treatments are also thought to lead to some degree of disease modification. Future research should be directed towards the development of agents that notably affect the course of disease.