Project description:In the last decade, more than half of U.S. children were born to working mothers and 65% of working men and women were of reproductive age. In 2004 more than 28 million women age 18-44 were employed full time. This implies the need for clinicians to possess an awareness about the impact of work on the health of their patients and their future offspring. Most chemicals in the workplace have not been evaluated for reproductive toxicity, and where exposure limits do exist, they were generally not designed to mitigate reproductive risk. Therefore, many toxicants with unambiguous reproductive and developmental effects are still in regular commercial or therapeutic use and thus present exposure potential to workers. Examples of these include heavy metals, (lead, cadmium), organic solvents (glycol ethers, percholoroethylene), pesticides and herbicides (ethylene dibromide) and sterilants, anesthetic gases and anti-cancer drugs used in healthcare. Surprisingly, many of these reproductive toxicants are well represented in traditional employment sectors of women, such as healthcare and cosmetology. Environmental exposures also figure prominently in evaluating a woman's health risk and that to a pregnancy. Food and water quality and pesticide and solvent usage are increasingly topics raised by women and men contemplating pregnancy. The microenvironment of a woman, such as her choices of hobbies and leisure time activities also come into play. Caregivers must be aware of their patients' potential environmental and workplace exposures and weigh any risk of exposure in the context of the time-dependent window of reproductive susceptibility. This will allow informed decision-making about the need for changes in behavior, diet, hobbies or the need for added protections on the job or alternative duty assignment. Examples of such environmental and occupational history elements will be presented together with counseling strategies for the clinician.
Project description:BackgroundRecent data provide support for the concept that potentially modifiable exposures are responsible for sporadic amyotrophic lateral sclerosis (ALS).ObjectiveTo evaluate environmental and occupational exposures as risk factors for sporadic ALS.MethodsWe performed a case-control study of ALS among residents of New England, USA. The analysis compared questionnaire responses from 295 patients with a confirmed ALS diagnosis to those of 225 controls without neurodegenerative illness.ResultsSelf-reported job- or hobby-related exposure to one or more chemicals, such as pesticides, solvents, or heavy metals, increased the risk of ALS (adjusted OR 2.51; 95% CI 1.64-3.89). Industries with a higher toxicant exposure potential (construction, manufacturing, mechanical, military, or painting) were associated with an elevated occupational risk (adjusted OR 3.95; 95% CI 2.04-8.30). We also identified increases in the risk of ALS associated with frequent participation in water sports, particularly waterskiing (adjusted OR 3.89; 95% CI 1.97-8.44). Occupation and waterskiing both retained independent statistical significance in a composite model containing age, gender, and smoking status.ConclusionsOur study contributes to a growing body of literature implicating occupational- and hobby-related toxicant exposures in ALS etiology. These epidemiologic study results also provide motivation for future evaluation of water-body-related risk factors.
Project description:Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease characterised by a progressive and irreversible decline in lung function, which is associated with poor long-term survival. The pathogenesis of IPF is incompletely understood. An accumulating body of evidence, obtained over the past three decades, suggests that occupational and environmental exposures may play a role in the development of IPF. This narrative literature review aims to summarise current understanding and the areas of ongoing research into the role of occupational and environmental exposures in the pathogenesis of IPF.
Project description:BackgroundTesticular germ cell tumours (TGCT) are the most common cancers in men aged between 15 and 44 years and the incidence has increased steeply over the past 30 years. The rapid increase in the incidence, the spatial variation and the evolution of incidence in migrants suggest that environmental risk factors play a role in TGCT aetiology. The purpose of our review is to summarise the current state of knowledge on occupational and environmental factors thought to be associated with TGCT.MethodsA systematic literature search of PubMed. All selected articles were quality appraised by two independent researchers using the 'Newcastle-Ottawa Quality Assessment Scale'.ResultsAfter exclusion of duplicate reports, 72 relevant articles were selected; 65 assessed exposure in adulthood, 7 assessed parental exposures and 2 assessed both. Associations with occupation was reported for agricultural workers, construction workers, firemen, policemen, military personnel, as well as workers in paper, plastic or metal industries. Electromagnetic fields, PCBs and pesticides were also suggested. However, results were inconsistent and studies showing positive associations tended to had lower quality ranking using the assessment scale (p=0.02).DiscussionCurrent evidence does not allow concluding on existence of any clear association between TGCT and adulthood occupational or environmental exposure. The limitations of the studies may partly explain the inconsistencies observed. The lack of association with adulthood exposure is in line with current hypotheses supporting the prenatal origin of TGCT. Future research should focus on prenatal or early life exposure, as well as combined effect of prenatal and later life exposure. National and international collaborative studies should allow for more adequately powered epidemiological studies. More sophisticated methods for assessing exposure as well as evaluating gene-environment interactions will be necessary to establish clear conclusion.
Project description:Low-cost optical particle counters effectively measure particulate matter (PM) mass concentrations once calibrated. Sensor calibration can be established by deriving a linear regression model by performing side-by-side measurements with a reference instrument. However, calibration differences between environmental and occupational settings have not been demonstrated. This study evaluated four commercially available, low-cost PM sensors (OPC-N3, SPS30, AirBeam2, and PMS A003) in both settings. The mass concentrations of three aerosols (salt, Arizona road dust, and Poly-alpha-olefin-4 oil) were measured and compared with a reference instrument. OPC-N3 and SPS30 were highly correlated (r = 0.99) with the reference instrument for all aerosol types in environmental settings. In occupational settings, SPS30, AirBeam2, and PMS A003 exhibited high correlation (>0.96), but the OPC-N3 correlation varied (r = 0.88-1.00). Response significantly (p < 0.001) varied between environmental and occupational settings for most particle sizes and aerosol types. Biases varied by particle size and aerosol type. SPS30 and OPC-N3 exhibited low bias for environmental settings, but all of the sensors showed a high bias for occupational settings. For intra-instrumental precision, SPS30 exhibited high precision for salt for both settings compared to the other low-cost sensors and aerosol types. These findings suggest that SPS30 and OPC-N3 can provide a reasonable estimate of PM mass concentrations if calibrated differently for environmental and occupational settings using site-specific calibration factors.
Project description:Purpose of reviewDespite a call for better understanding of the role of environmental pollutant influences on mental health and the tremendous public health burden of mental health, this issue receives far less attention than many other effects of pollutants. Here we summarize the body of literature on non-occupational environmental pollutant exposures and adult depression, anxiety, and suicide-in PubMed, Embase, Web of Science, and PsychINFO through the end of year 2018.Recent findingsOne hundred twelve articles met our criteria for further review. Of these, we found 88 articles on depression, 33 on anxiety, and 22 on suicide (31 articles covered multiple outcomes). The earliest article was published in 1976, and the most frequent exposure of interest was air pollution (n = 33), followed by secondhand smoke (n = 20), metals (n = 18), noise (n = 17), and pesticides (n = 10). Other exposures studied less frequently included radiation, magnetic fields, persistent organic pollutants (POPs), volatile organic compounds, solvents, and reactive sulfur compounds. The current literature, although limited, clearly suggests many kinds of environmental exposures may be risk factors for depression, anxiety, and suicide. For several pollutants, important limitations exist with many of the studies. Gaps in the body of research include a need for more longitudinal, life-course studies, studies that can measure cumulative exposures as well as shorter-term exposures, studies that reduce the possibility of reverse causation, and mechanistic studies focused on neurotoxic exposures.
Project description:BackgroundSarcoidosis most commonly affects lungs and intrathoracic lymph nodes, but any other organ can be involved. In epidemiological studies, many occupational and environmental exposures have been linked to sarcoidosis but their relationship with the disease phenotype has barely been studied.ObjectiveTo investigate how occupational and environmental exposures prior to diagnosis relate to organ involvement in patients with sarcoidosis METHODS: We retrospectively studied patients seen at a sarcoidosis clinic between 2017 and 2020. Patients were included if they had a clinical presentation consistent with sarcoidosis and histologically confirmed epithelioid granulomas or had Löfgren syndrome. In a case-case analysis using multivariable logistic regression we calculated odds ratios (OR) of prespecified exposure categories (based on expert ascertainment) for cases with a given organ involvement versus cases without this organ involvement.ResultsWe included 238 sarcoidosis patients. Sarcoidosis limited to pulmonary involvement was associated with exposure to inorganic dust prior to diagnosis (OR 2.11; 95% confidence interval [CI] 1.11-4.17). Patients with liver involvement had higher odds of contact with livestock (OR 3.68; 95% CI 0.91-12.7) or having jobs with close human contact (OR 4.33; 95% CI 1.57-11.3) than patients without liver involvement. Similar associations were found for splenic involvement (livestock: OR 4.94, 95% CI 1.46-16.1; close human contact: OR 3.78; 95% CI 1.47-9.46). Cardiac sarcoidosis was associated with exposure to reactive chemicals (OR 5.08; 95% CI 1.28-19.2) or livestock (OR 9.86; 95% CI 1.95-49.0). Active smokers had more ocular sarcoidosis (OR 3.26; 95% CI 1.33-7.79).ConclusionsOur study indicates that, in sarcoidosis patients, different exposures might be related to different organ involvements-hereby providing support for the hypothesis that sarcoidosis has more than one cause, each of which may promote a different disease phenotype.
Project description:Background and objectivesMembranous nephropathy is a rare autoimmune kidney disease whose increasing prevalence in industrialized countries pleads for the involvement of an environmental factor in the development of the disease. In addition, the predominance of men in membranous nephropathy, classically attributed to biologic or genetic differences between men and women, could also be due to different occupational exposures. To support this hypothesis, we sought to describe the toxic occupational exposures of patients with membranous nephropathy.Design, setting, participants, & measurementsIn this observational epidemiologic study, we compared the occupations and toxic occupational exposures of 100 patients with membranous nephropathy with those of the general population, consisting of two cohorts of 26,734,000 and 26,500 French workers. We then compared the characteristics of patients exposed to an occupational toxic substance with those of unexposed patients.ResultsPatients with membranous nephropathy worked more frequently in the construction sector than the general population (33% versus 7%, P<0.001). This difference remained significant by age and sex. They were also more frequently exposed to toxic substances, such as asbestos (16% versus 5%, P<0.001), lead (9% versus 1%, P<0.001), or organic solvents (37% versus 15%, P<0.001), than the general population. The predominance of men in the subgroup of patients occupationally exposed to toxic substances was not observed in unexposed individuals (organic solvents: 80% men versus 41%, P<0.001; asbestos: 90% men versus 55%, P=0.004). In addition, patients with phospholipase A2 receptor 1 (PLA2R1) epitope spreading were more frequently exposed to asbestos and organic solvents than patients without epitope spreading (32% versus 7%, P=0.02 and 74% versus 43%, P=0.02, respectively), with a dose-dependent effect.ConclusionsPatients with membranous nephropathy were more frequently exposed to certain occupational toxic substances, such as asbestos and organic solvents, than the general population. This occupational exposure was more frequent in men and in patients with PLA2R1 epitope spreading.Clinical trial registry name and registration numberImmunopathological Analysis in a French National Cohort of Membranous Nephropathy (IHMN), NCT04326218.PodcastThis article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_10_25_CJN02930322.mp3.
Project description:Environmental chemicals and contaminants coming from multiple external sources enter the human body, determining a potential risk for human health. Human biomonitoring (HBM), measuring the concentrations of biomarkers in human specimens, has become an emerging approach for assessing population-wide exposure to hazardous chemicals and health risk through large-scale studies in many countries. However, systematic mapping of HBM studies, including their characteristics, targeted hazardous pollutants, analytical techniques, and sample population (general population and occupationally exposed workers), has not been done so far. We conducted a systematic review of the literature related to airborne hazardous pollutants in biofluids to answer the following questions: Which main chemicals have been included in the literature, which bodily fluids have been used, and what are the main findings? Following PRISMA protocol, we summarized the publications published up to 4 February 2021 of studies based on two methods: gas-chromatography/mass spectrometry (GC/MS) and electronic noses (e-noses). We screened 2606 records and 117 publications were included in the analysis, the most based on GC/MS analysis. The selected HBM studies include measurements of biomarkers in different bodily fluids, such as blood, urine, breast milk, and human semen as well as exhaled air. The papers cover numerous airborne hazardous pollutants that we grouped in chemical classes; a lot of hazardous and noxious compounds, mainly persistent organic pollutants (POPs) and volatile organic compounds (VOCs), have been detected in biological fluids at alarming levels. The scenario that emerged from this survey demonstrates the importance of HBM in human exposure to hazardous pollutants and the need to use it as valid tool in health surveillance. This systematic review represents a starting point for researchers who focus on the world of pollutant biomonitoring in the human body and gives them important insights into how to improve the methods based on GC/MS. Moreover, it makes a first overview of the use of gas sensor array and e-noses in HBM studies.