Unknown

Dataset Information

0

Negative cooperativity upon hydrogen bond-stabilized O2 adsorption in a redox-active metal-organic framework.


ABSTRACT: The design of stable adsorbents capable of selectively capturing dioxygen with a high reversible capacity is a crucial goal in functional materials development. Drawing inspiration from biological O2 carriers, we demonstrate that coupling metal-based electron transfer with secondary coordination sphere effects in the metal-organic framework Co2(OH)2(bbta) (H2bbta = 1H,5H-benzo(1,2-d:4,5-d')bistriazole) leads to strong and reversible adsorption of O2. In particular, moderate-strength hydrogen bonding stabilizes a cobalt(III)-superoxo species formed upon O2 adsorption. Notably, O2-binding in this material weakens as a function of loading, as a result of negative cooperativity arising from electronic effects within the extended framework lattice. This unprecedented behavior extends the tunable properties that can be used to design metal-organic frameworks for adsorption-based applications.

SUBMITTER: Oktawiec J 

PROVIDER: S-EPMC7303157 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6168839 | biostudies-literature
| S-EPMC7815320 | biostudies-literature
| S-EPMC7496733 | biostudies-literature
| S-EPMC5488241 | biostudies-literature
| S-EPMC4827526 | biostudies-literature
| S-EPMC8148054 | biostudies-literature
| S-EPMC5575832 | biostudies-literature
| S-EPMC8290053 | biostudies-literature
| S-EPMC8163410 | biostudies-literature
| S-EPMC7484140 | biostudies-literature