Project description:Osteopontin is a member of the proinflammatory cytokine network, a complex system that involves many chemokines, cytokines, and growth factors. The aim of the present study was to study the associations between osteopontin and a large number of chemokines, cytokines, and growth factors. We analyzed plasma and urine osteopontin in 652 men from the Uppsala Longitudinal Study of Adult Men (ULSAM) study cohort and compared the levels with the levels of eighty-five chemokines, cytokines, and growth factors. We found significant associations between plasma osteopontin and 37 plasma biomarkers in a model adjusted for age, and 28 of those plasma biomarkers were significant in a model also adjusting for cardiovascular risk factors. There were no significant associations after Bonferroni adjustment between urine osteopontin and any of the studied plasma cytokine biomarkers. This study shows that circulating osteopontin participates in a protein-protein interaction network of chemokines, cytokines, and growth factors. The network contains responses, pathways, and receptor binding interactions relating to cytokines, regulation of the immune system, and also regulation of apoptosis and intracellular signal transduction.
Project description:Idiopathic achalasia is a disease that is characterized by the absence of peristalsis and incomplete relaxation of the lower esophageal sphincter, which is accompanied by dysphagia, regurgitation, chest pain and weight loss. The role of inflammatory infiltrates in the pathogenesis of achalasia remains controversial, although the infiltrating cell profile in the tissue has been previously characterized histologically and immunohistochemically. The present study aimed to evaluate the serum levels of 27 protein biomarkers to determine their association with achalasia and the clinical disease characteristics. The cytokine, chemokine and growth factor serum profiles of 68 patients with achalasia and 39 healthy individuals were explored using the 27-Bio-Plex Pro Human Cytokine assay. Reductions in the levels of inflammatory mediators IL-1β, IL-2, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-15, IL-17, fibroblast growth factor, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, interferon-γ, monocyte chemoattractant protein-1, macrophage inflammatory protein-1 (MIP-1)α and MIP-1β, regulated upon activation normal T cell expressed and presumably secreted, TNF-α and VEGF were detected in the serum samples of patients with achalasia compared with those in the control group (P<0.05). However, significant associations between the expression in the levels of inflammatory factors and clinical characteristics of the patients were not found (P>0.05). These results suggest that achalasia is a disease that has a local but not a systemic inflammatory pattern. Further studies are required to improve the current understanding of the mechanism underlying this disease.
Project description:Periodontal disease (PD) is characterized by inflammatory tissue destruction in tooth supporting apparatus. Many studies indicate that the underlying pathogenesis is in concordance with rheumatoid arthritis (RA) sharing immune-inflammatory events affect both diseases. The aim of this study was to investigate serum cytokines, chemokines, growth factors, enzymes and costimulatory proteins in association with periodontal conditions in PD and RA subjects.Periodontal examination was performed in RA (n = 38), PD (n = 38) and healthy subjects (n = 14). Bleeding on probing (BOP) and probing pocket depth (PPD) were measured. Marginal bone loss (MBL) for premolars and molars was measured on digital panoramic radiographs. PD was defined as present if the PPD was ?5mm in ? 3 different sites. Serum samples were collected from all subjects. A multiplex proximity extension assay (PEA) was used to analyze the samples for simultaneous measurement of 92 cytokines. Cytokines with ? 60% quantitative results were included.A significant positive correlation was seen for ST1A1, FGF-19 and NT-3 whereas EN-RAGE, DNER, CX3CL1 and TWEAK associated inversely with BOP, PPD? 5mm and MBL but positively with number of teeth. Several CD markers (CD244, CD40, CDCP1, LIF-R, IL-10RA, CD5 and CD6) were found to be associated with BOP, shallow and deep pockets, MBL and number of teeth, either directly or inversely. Most chemokines (CCL8, CX3CL1, CXCL10, CXCL11, CCL11, CCL4, CCL20, CXCL5, CXCL6, and CCL23) were positively associated with number of teeth and some inversely related to MBL (CCL8, CXCL10). Proteins with enzymatic activity (ST1A1, HGF and CASP-8) were directly related to the severity of periodontal conditions and inversely related to number of teeth. Aside from FGF-19, other growth factors were also directly associated with MBL (HGF), number of teeth (VEGF-A, LAP TGF-beta-1) and, inversely to, shallow pockets (LAP TGF-beta-1, TGFA and Beta-NGF). Out of 33 cytokines, 32 associated inversely with shallow pockets, whereas only CD40 associated positively. Associations between cytokines and periodontal parameters in the RA group were comparatively less. Statistical analyses were adjusted for multivariate effects using the Benjamini-Hochberg false discovery rate method.Systemic inflammatory burden, via known and novel markers, is associated with periodontal conditions in PD and RA subjects. Shallow pockets are not associated with a higher inflammatory state.
Project description:To investigate which cytokines, chemokines and growth factors are involved in the immunopathogenesis of idiopathic uveitis, and whether cytokine profiles are associated with. Serum and aqueous humor (AH) samples of 75 patients with idiopathic uveitis were analyzed by multiplex immunoassay. Infectious controls consisted of 16 patients with ocular toxoplasmosis all confirmed by intraocular fluid analyses. Noninfectious controls consisted of 7 patients with Behçet disease related uveitis and 15 patients with sarcoidosis related uveitis. The control group consisted of AH and serum samples from 47 noninflammatory control patients with age-related cataract. In each sample, 27 immune mediators ± IL-21 and IL-23 were measured. In idiopathic uveitis, 13 of the 29 mediators, including most proinflammatory and vascular mediators such as IL-6, IL-8, IL-12, G-CSF, GM-CSF, MCP-1, IP-10, TNF-α and VEGF, were significantly elevated in the aqueous humor when compared to all controls. Moreover, IL-17, IP-10, and IL-21, were significantly elevated in the serum when compared to all controls. We clustered 4 subgroups of idiopathic uveitis using a statistical analysis of hierarchical unsupervised classification, characterized by the order of magnitude of concentrations of intraocular cytokines. The pathogenesis of idiopathic uveitis is characterized by the presence of predominantly proinflammatory cytokines and chemokines and vascular endothelial growth factor with high expression levels as compared to other causes of uveitis. There are indications for obvious Th-1/ IL21-Th17 pathways but also IL9-Th9 and increased IFN-γ-inducing cytokine (IL12) and IFN-γ-inducible CXC chemokine (IP-10). The combined data suggest that immune mediator expression is different among idiopathic uveitis. This study suggests various clusters among the idiopathic uveitis group rather than one specific uveitis entity.
Project description:The focus of sepsis has shifted from inflammation to organ dysfunction on the basis of a recent definition based on the sequential organ failure score (SOFA). A diagnostic and prognostic marker is necessary under this definition but is currently unknown. We enrolled 80 sepsis patients consecutively admitted to an intensive care unit through the emergency department and 80 healthy control patients who received routine health check-ups from August 2018 to January 2019. SEPSIS-3 criteria were used for the diagnosis of patients based on SOFA score ≥ 2 from the baseline along with evidence of infection. Concentrations of 28 cytokines, eight chemokines, and nine growth factors were measured on the day of diagnosis. Hierarchical cluster analysis was performed for molecules. The majority of infections were pneumonia (45% of patients) and urinary tract infections (40% of patients). Most of the measured molecules were increased in patients with sepsis. Area under receiver operating characteristic curve (AUROC) values were found to be as follows: hepatic growth factor (HGF), 0.899; interleukin-1 receptor antagonist (IL-1RA), 0.893; C-C motif ligand 5 (CCL5) 5, 0.887; C-X-C motif chemokine 10 (CXCL10), 0.851; CCL2, 0.840; and IL-6, 0.830. IL-1RA, IL-6, IL-8, IL-15, and CCL11 concentrations correlated with SOFA score with statistical significance. Prognosis multivariate analysis revealed an odds ratio of 0.968 for epidermal growth factor (EGF). Three clusters were formed, of which Clusters 2 and 3 were associated with nonsurvivors. Diagnosis of sepsis was performed using cytokines, chemokines, and growth factors. HGF revealed the highest diagnostic capability, and EGF predicted favorable prognosis among the tested molecules.
Project description:Enterovirus 71 (EV71) is one of the most common intestinal virus that causes hand, foot, and mouth disease (HFMD) in infants and young children (mostly ≤5 years of age). Generally, children with EV71-infected HFMD have mild symptoms that resolve spontaneously within 7-14 days without complications. However, some EV71-infected HFMD cases lead to severe complications such as aseptic meningitis, encephalitis, acute flaccid paralysis, pulmonary edema, cardiorespiratory complication, circulatory disorders, poliomyelitis-like paralysis, myocarditis, meningoencephalitis, neonatal sepsis, and even death. The mechanism of EV71 pathogenesis has been studied extensively, and the regulation of host immune responses is suspected to aggravate EV71-induced severe complications. Recently, several cytokines or chemokines such as TNF-α, IFN-γ, IL-1β, IL-18, IL-33, IL-37, IL-4, IL-13, IL-6, IL-12, IL-23, IL-27, IL-35, IL-10, IL-22, IL-17F, IL-8, IP-10, MCP-1, G-CSF, and HMGB1 have been reported to be associated with severe EV71 infection by numerous research teams, including our own. This review is aimed at summarizing the pathophysiology of the cytokines and chemokines with severe EV71 infection.
Project description:BackgroundThe modulating effect of vitamin D on cytokine concentrations in severe coronavirus disease 2019 (COVID-19) remains unknown.ObjectivesWe aimed to investigate the effect of a single high dose of vitamin D3 on cytokines, chemokines, and growth factor in hospitalized patients with moderate to severe COVID-19.MethodsThis is a post hoc, ancillary, and exploratory analysis from a multicenter, double-blind, placebo-controlled, randomized clinical trial. Patients with moderate to severe COVID-19 were recruited from 2 hospitals in São Paulo, Brazil. Of 240 randomly assigned patients, 200 were assessed in this study and randomly assigned to receive a single oral dose of 200,000 IU vitamin D3 (n = 101) or placebo (n = 99). The primary outcome was hospital length of stay, which has been published in our previous study. The prespecified secondary outcomes were serum concentrations of IL-1β, IL-6, IL-10, TNF-α, and 25-hydroxyvitamin D. The post hoc exploratory secondary outcomes were IL-4, IL-12p70, IL-17A, IFN-γ, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-8, IFN-inducible protein-10 (IP-10), macrophage inflammatory protein-1β (MIP-1β), monocyte chemoattractant protein-1 (MCP-1), vascular endothelial growth factor (VEGF), and leukocyte count. Generalized estimating equations for repeated measures, with Bonferroni's adjustment, were used for testing all outcomes.ResultsThe study included 200 patients with a mean ± SD age of 55.5 ± 14.3 y and BMI of 32.2 ± 7.1 kg/m2, of which 109 (54.5%) were male. GM-CSF concentrations showed a significant group-by-time interaction effect (P = 0.04), although the between-group difference at postintervention after Bonferroni's adjustment was not significant. No significant effects were observed for the other outcomes.ConclusionsThe findings do not support the use of a single dose of 200,000 IU vitamin D3, compared with placebo, for the improvement of cytokines, chemokines, and growth factor in hospitalized patients with moderate to severe COVID-19.This trial was registered at clinicaltrials.gov as NCT04449718.
Project description:Cerebral malaria is among the major causes of malaria-associated mortality and effective adjunctive therapeutic strategies are currently lacking. Central pathophysiological processes involved in the development of cerebral malaria include an imbalance of pro- and anti-inflammatory responses to Plasmodium infection, endothelial cell activation, and loss of blood-brain barrier integrity. However, the sequence of events, which initiates these pathophysiological processes as well as the contribution of their complex interplay to the development of cerebral malaria remain incompletely understood. Several cytokines and chemokines have repeatedly been associated with cerebral malaria severity. Increased levels of these inflammatory mediators could account for the sequestration of leukocytes in the cerebral microvasculature present during cerebral malaria, thereby contributing to an amplification of local inflammation and promoting cerebral malaria pathogenesis. Herein, we highlight the current knowledge on the contribution of cytokines and chemokines to the pathogenesis of cerebral malaria with particular emphasis on their roles in endothelial activation and leukocyte recruitment, as well as their implication in the progression to blood-brain barrier permeability and neuroinflammation, in both human cerebral malaria and in the murine experimental cerebral malaria model. A better molecular understanding of these processes could provide the basis for evidence-based development of adjunct therapies and the definition of diagnostic markers of disease progression.
Project description:Background: The pathophysiology underlying altered blood-cerebrospinal fluid barrier (BCSFB) function in Alzheimer's disease (AD) is unknown but may relate to endothelial cell activation and cytokine mediated inflammation. Methods: Cerebrospinal fluid (CSF) and peripheral blood were concurrently collected from cognitively healthy controls (N = 21) and patients with mild cognitive impairment (MCI) (N = 8) or AD (N = 11). The paired serum and CSF samples were assayed for a panel of cytokines, chemokines, and related trophic factors using multiplex ELISAs. Dominance analysis models were conducted to determine the relative importance of the inflammatory factors in relationship to BCSFB permeability, as measured by CSF/serum ratios for urea, creatinine, and albumin. Results: BCSFB disruption to urea, a small molecule distributed by passive diffusion, had a full model coefficient of determination (r2) = 0.35, and large standardized dominance weights (>0.1) for monocyte chemoattractant protein-1, interleukin (IL)-15, IL-1r?, and IL-2 in serum. BCSFB disruption to creatinine, a larger molecule governed by active transport, had a full model r2 = 0.78, and large standardized dominance weights for monocyte inhibitor protein-1b in CSF and tumor necrosis factor-? in serum. BCSFB disruption to albumin, a much larger molecule, had a full model r2 = 0.62, and large standardized dominance weights for IL-17a, interferon-gamma, IL-2, and VEGF in CSF, as well IL-4 in serum. Conclusions: Inflammatory proteins have been widely documented in the AD brain. The results of the current study suggest that changes in BCSFB function resulting in altered permeability and transport are related to expression of specific inflammatory proteins, and that the shifting distribution of these proteins from serum to CSF in AD and MCI is correlated with more severe perturbations in BCSFB function.
Project description:BackgroundMalaria is a major cause of morbidity and mortality worldwide with over one million deaths annually, particularly in children under five years. This study was the first to examine plasma cytokines, chemokines and cellular immune responses in pre-school Nigerian children infected with Plasmodium falciparum from four semi-urban villages near Ile-Ife, Osun State, Nigeria.MethodsBlood was obtained from 231 children (aged 39-73 months) who were classified according to mean P. falciparum density per ?l of blood (uninfected (n = 89), low density (<1,000, n = 51), medium density (1,000-10,000, n = 65) and high density (>10,000, n = 22)). IL-12p70, IL-10, Nitric oxide, IFN-?, TNF, IL-17, IL-4 and TGF-?, C-C chemokine RANTES, MMP-8 and TIMP-1 were measured in plasma. Peripheral blood mononuclear cells were obtained and examined markers of innate immune cells (CD14, CD36, CD56, CD54, CD11c AND HLA-DR). T-cell sub-populations (CD4, CD3 and ??TCR) were intracellularly stained for IL-10, IFN-? and TNF following polyclonal stimulation or stimulated with malaria parasites. Ascaris lumbricoides was endemic in these villages and all data were analysed taking into account the potential impact of bystander helminth infection. All data were analysed using SPSS 15 for windows and in all tests, p <0.05 was deemed significant.ResultsThe level of P. falciparum parasitaemia was positively associated with plasma IL-10 and negatively associated with IL-12p70. The percentage of monocytes was significantly decreased in malaria-infected individuals while malaria parasitaemia was positively associated with increasing percentages of CD54+, CD11c+ and CD56+ cell populations. No association was observed in cytokine expression in mitogen-activated T-cell populations between groups and no malaria specific immune responses were detected. Although A. lumbricoides is endemic in these villages, an analysis of the data showed no impact of this helminth infection on P. falciparum parasitaemia or on immune responses associated with P. falciparum infection.ConclusionsThese findings indicate that Nigerian children infected with P. falciparum exhibit immune responses associated with active malaria infection and these responses were positively associated with increased P. falciparum parasitaemia.