Unknown

Dataset Information

0

High-Field Asymmetric Waveform Ion Mobility Spectrometry and Native Mass Spectrometry: Analysis of Intact Protein Assemblies and Protein Complexes.


ABSTRACT: High-field asymmetric waveform ion mobility spectrometry (FAIMS) enables the separation of ions on the basis of their differential mobility in an asymmetric oscillating electric field. We, and others, have previously demonstrated the benefits of FAIMS for the analysis of peptides and denatured proteins. To date, FAIMS has not been integrated with native mass spectrometry of folded proteins and protein complexes, largely due to concerns over the heating effects associated with the high electric fields employed. Here, we demonstrate the newly introduced cylindrical FAIMS Pro device coupled with an Orbitrap Eclipse enables analysis of intact protein assemblies up to 147 kDa. No evidence for dissociation was detected suggesting that any field heating is insufficient to disrupt the noncovalent interactions governing these assemblies. Moreover, the FAIMS device was integrated into native liquid extraction surface analysis (LESA) MS of protein assemblies directly from thin tissue sections. Intact tetrameric hemoglobin (64 kDa) and trimeric reactive intermediate deiminase A (RidA, 43 kDa) were detected. Improvements in signal-to-noise of between 1.5× and 12× were observed for these protein assemblies on integration of FAIMS.

SUBMITTER: Hale OJ 

PROVIDER: S-EPMC7304667 | biostudies-literature | 2020 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

High-Field Asymmetric Waveform Ion Mobility Spectrometry and Native Mass Spectrometry: Analysis of Intact Protein Assemblies and Protein Complexes.

Hale Oliver J OJ   Illes-Toth Eva E   Mize Todd H TH   Cooper Helen J HJ  

Analytical chemistry 20200501 10


High-field asymmetric waveform ion mobility spectrometry (FAIMS) enables the separation of ions on the basis of their differential mobility in an asymmetric oscillating electric field. We, and others, have previously demonstrated the benefits of FAIMS for the analysis of peptides and denatured proteins. To date, FAIMS has not been integrated with native mass spectrometry of folded proteins and protein complexes, largely due to concerns over the heating effects associated with the high electric f  ...[more]

Similar Datasets

| S-EPMC8327357 | biostudies-literature
| S-EPMC4777518 | biostudies-literature
| S-EPMC3295202 | biostudies-other
| S-EPMC3946938 | biostudies-literature
| S-EPMC6993951 | biostudies-literature
| S-EPMC8855572 | biostudies-literature
| S-EPMC6504596 | biostudies-literature
| S-EPMC8051555 | biostudies-literature
| S-EPMC6718375 | biostudies-literature
| S-EPMC3842852 | biostudies-other