Unknown

Dataset Information

0

The Potential of Overlayers on Tin-based Perovskites for Water Splitting.


ABSTRACT: Photoelectrochemical water splitting is a promising method of clean hydrogen production for green energy uses. Here, we report on a tin-based oxide perovskite combined with an overlayer that shows enhanced bifunctional hydrogen and oxygen evolution. In our first-principles study of tin-based perovskites, based upon density functional theory, we investigate how the formation of a surface affects the electronic properties of these materials. We show that the best candidate, SrSnO3, possesses hydrogen and oxygen overpotentials of 0.75 and 0.72 eV, respectively, which are reduced to 0.35 and 0.54 eV with the inclusion of a ZrO2 overlayer. Furthermore, this overlayer promotes charge extraction, stabilizes the reaction pathways, and improves the band gap such that it straddles the overpotentials between pH 0 and pH 12. This result indicates that SrSnO3 with a ZrO2 overlayer has significant potential as a highly efficient bifunctional water splitter for producing hydrogen and oxygen gas on the same surface.

SUBMITTER: Taylor NT 

PROVIDER: S-EPMC7304906 | biostudies-literature | 2020 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Potential of Overlayers on Tin-based Perovskites for Water Splitting.

Taylor Ned Thaddeus NT   Price Conor Jason CJ   Petkov Alexander A   Romanis Carr Marcus Ian MI   Hale Jason Charles JC   Hepplestone Steven Paul SP  

The journal of physical chemistry letters 20200508 10


Photoelectrochemical water splitting is a promising method of clean hydrogen production for green energy uses. Here, we report on a tin-based oxide perovskite combined with an overlayer that shows enhanced bifunctional hydrogen and oxygen evolution. In our first-principles study of tin-based perovskites, based upon density functional theory, we investigate how the formation of a surface affects the electronic properties of these materials. We show that the best candidate, SrSnO<sub>3</sub>, poss  ...[more]

Similar Datasets

| S-EPMC6644770 | biostudies-literature
| S-EPMC6790916 | biostudies-literature
| S-EPMC7279556 | biostudies-literature
| S-EPMC7114145 | biostudies-literature
| S-EPMC6561953 | biostudies-literature
| S-EPMC8280731 | biostudies-literature
| S-EPMC5814736 | biostudies-literature
| S-EPMC3386106 | biostudies-literature
| S-EPMC6492635 | biostudies-literature
| S-EPMC8371112 | biostudies-literature