Unknown

Dataset Information

0

A reversible oxygen redox reaction in bulk-type all-solid-state batteries.


ABSTRACT: An all-solid-state lithium battery using inorganic solid electrolytes requires safety assurance and improved energy density, both of which are issues in large-scale applications of lithium-ion batteries. Utilization of high-capacity lithium-excess electrode materials is effective for the further increase in energy density. However, they have never been applied to all-solid-state batteries. Operational difficulty of all-solid-state batteries using them generally lies in the construction of the electrode-electrolyte interface. By the amorphization of Li2RuO3 as a lithium-excess model material with Li2SO4, here, we have first demonstrated a reversible oxygen redox reaction in all-solid-state batteries. Amorphous nature of the Li2RuO3-Li2SO4 matrix enables inclusion of active material with high conductivity and ductility for achieving favorable interfaces with charge transfer capabilities, leading to the stable operation of all-solid-state batteries.

SUBMITTER: Nagao K 

PROVIDER: S-EPMC7304969 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5196437 | biostudies-literature
| S-EPMC8421359 | biostudies-literature
| S-EPMC6435713 | biostudies-literature
| S-EPMC9382350 | biostudies-literature
| S-EPMC6075698 | biostudies-other
| S-EPMC10966960 | biostudies-literature
| S-EPMC5775432 | biostudies-literature
| S-EPMC8373100 | biostudies-literature
| S-EPMC8442915 | biostudies-literature
| S-EPMC5075788 | biostudies-literature