Identification of functionally distinct and interacting cancer cell subpopulations from glioblastoma with intratumoral genetic heterogeneity.
Ontology highlight
ABSTRACT: AbstractBackgroundGlioblastomas display a high level of intratumoral heterogeneity with regard to both genetic and histological features. Within single tumors, subclones have been shown to communicate with each other to affect overall tumor growth. The aim of this study was to broaden the understanding of interclonal communication in glioblastoma.MethodsWe have used the U-343 model, consisting of U-343 MG, U-343 MGa, U-343 MGa 31L, and U-343 MGa Cl2:6, a set of distinct glioblastoma cell lines that have been derived from the same tumor. We characterized these with regard to temozolomide sensitivity, protein secretome, gene expression, DNA copy number, and cancer cell phenotypic traits. Furthermore, we performed coculture and conditioned media-based experiments to model cell-to-cell signaling in a setting of intratumoral heterogeneity.ResultsTemozolomide treatment of a coculture composed of all 4 U-343 cell lines presents a tumor relapse model where the least sensitive population, U-343 MGa 31L, outlives the others. Interestingly, the U-343 cell lines were shown to have distinct gene expression signatures and phenotypes although they were derived from a single tumor. The DNA copy number analysis revealed both common and unique alterations, indicating the evolutionary relationship between the cells. Moreover, these cells were found to communicate and affect each other’s proliferation, both via contact-dependent and -independent interactions, where NOTCH1, TGFBI, and ADAMTS1 signaling effects were involved, respectively.ConclusionsThese results provide insight into how complex the signaling events may prove to be in a setting of intratumoral heterogeneity in glioblastoma and provide a map for future studies.
SUBMITTER: Guo M
PROVIDER: S-EPMC7309246 | biostudies-literature | 2020 Jan-Dec
REPOSITORIES: biostudies-literature
ACCESS DATA