Project description:BackgroundHospitalized COVID-19 patients tend to be older and frequently have hypertension, diabetes, or coronary heart disease, but whether these comorbidities are true risk factors (ie, more common than in the general older population) is unclear. We estimated associations between preexisting diagnoses and hospitalized COVID-19 alone or with mortality, in a large community cohort.MethodsUK Biobank (England) participants with baseline assessment 2006-2010, followed in hospital discharge records to 2017 and death records to 2020. Demographic and preexisting common diagnoses association tested with hospitalized laboratory-confirmed COVID-19 (March 16 to April 26, 2020), alone or with mortality, in logistic models.ResultsOf 269 070 participants aged older than 65, 507 (0.2%) became COVID-19 hospital inpatients, of which 141 (27.8%) died. Common comorbidities in hospitalized inpatients were hypertension (59.6%), history of fall or fragility fractures (29.4%), coronary heart disease (21.5%), type 2 diabetes (type 2, 19. 9%), and asthma (17.6%). However, in models adjusted for comorbidities, age group, sex, ethnicity, and education, preexisting diagnoses of dementia, type 2 diabetes, chronic obstructive pulmonary disease, pneumonia, depression, atrial fibrillation, and hypertension emerged as independent risk factors for COVID-19 hospitalization, the first 5 remaining statistically significant for related mortality. Chronic kidney disease and asthma were risk factors for COVID-19 hospitalization in women but not men.ConclusionsThere are specific high-risk preexisting comorbidities for COVID-19 hospitalization and related deaths in community-based older men and women. These results do not support simple age-based targeting of the older population to prevent severe COVID-19 infections.
Project description:ObjectivesTo investigate severe COVID-19 risk by occupational group.MethodsBaseline UK Biobank data (2006-10) for England were linked to SARS-CoV-2 test results from Public Health England (16 March to 26 July 2020). Included participants were employed or self-employed at baseline, alive and aged <65 years in 2020. Poisson regression models were adjusted sequentially for baseline demographic, socioeconomic, work-related, health, and lifestyle-related risk factors to assess risk ratios (RRs) for testing positive in hospital or death due to COVID-19 by three occupational classification schemes (including Standard Occupation Classification (SOC) 2000).ResultsOf 120 075 participants, 271 had severe COVID-19. Relative to non-essential workers, healthcare workers (RR 7.43, 95% CI 5.52 to 10.00), social and education workers (RR 1.84, 95% CI 1.21 to 2.82) and other essential workers (RR 1.60, 95% CI 1.05 to 2.45) had a higher risk of severe COVID-19. Using more detailed groupings, medical support staff (RR 8.70, 95% CI 4.87 to 15.55), social care (RR 2.46, 95% CI 1.47 to 4.14) and transport workers (RR 2.20, 95% CI 1.21 to 4.00) had the highest risk within the broader groups. Compared with white non-essential workers, non-white non-essential workers had a higher risk (RR 3.27, 95% CI 1.90 to 5.62) and non-white essential workers had the highest risk (RR 8.34, 95% CI 5.17 to 13.47). Using SOC 2000 major groups, associate professional and technical occupations, personal service occupations and plant and machine operatives had a higher risk, compared with managers and senior officials.ConclusionsEssential workers have a higher risk of severe COVID-19. These findings underscore the need for national and organisational policies and practices that protect and support workers with an elevated risk of severe COVID-19.
Project description:BackgroundAge and disease prevalence are the 2 biggest risk factors for Coronavirus disease 2019 (COVID-19) symptom severity and death. We therefore hypothesized that increased biological age, beyond chronological age, may be driving disease-related trends in COVID-19 severity.MethodsUsing the UK Biobank England data, we tested whether a biological age estimate (PhenoAge) measured more than a decade prior to the COVID-19 pandemic was predictive of 2 COVID-19 severity outcomes (inpatient test positivity and COVID-19-related mortality with inpatient test-confirmed COVID-19). Logistic regression models were used with adjustment for age at the pandemic, sex, ethnicity, baseline assessment centers, and preexisting diseases/conditions.ResultsSix hundred and thirteen participants tested positive at inpatient settings between March 16 and April 27, 2020, 154 of whom succumbed to COVID-19. PhenoAge was associated with increased risks of inpatient test positivity and COVID-19-related mortality (ORMortality = 1.63 per 5 years, 95% CI: 1.43-1.86, p = 4.7 × 10-13) adjusting for demographics including age at the pandemic. Further adjustment for preexisting diseases/conditions at baseline (ORM = 1.50, 95% CI: 1.30-1.73 per 5 years, p = 3.1 × 10-8) and at the early pandemic (ORM = 1.21, 95% CI: 1.04-1.40 per 5 years, p = .011) decreased the association.ConclusionsPhenoAge measured in 2006-2010 was associated with COVID-19 severity outcomes more than 10 years later. These associations were partly accounted for by prevalent chronic diseases proximate to COVID-19 infection. Overall, our results suggest that aging biomarkers, like PhenoAge may capture long-term vulnerability to diseases like COVID-19, even before the accumulation of age-related comorbid conditions.
Project description:BackgroundThe three main alleles of the APOE gene (ε4, ε3 and ε2) carry differential risks for conditions including Alzheimer's disease (AD) and cardiovascular disease. Due to their clinical significance, we explored disease associations of the APOE genotypes using a hypothesis-free, data-driven, phenome-wide association study (PheWAS) approach.MethodsWe used data from the UK Biobank to screen for associations between APOE genotypes and over 950 disease outcomes using genotype ε3ε3 as a reference. Data was restricted to 337,484 white British participants (aged 37-73 years).FindingsAfter correction for multiple testing, PheWAS analyses identified associations with 37 outcomes, representing 18 distinct diseases. As expected, ε3ε4 and ε4ε4 genotypes associated with increased odds of AD (p ≤ 7.6 × 10-46), hypercholesterolaemia (p ≤ 7.1 × 10-17) and ischaemic heart disease (p ≤ 2.3 × 10-4), while ε2ε3 provided protection for the latter two conditions (p ≤ 3.7 × 10-10) compared to ε3ε3. In contrast, ε4-associated disease protection was seen against obesity, chronic airway obstruction, type 2 diabetes, gallbladder disease, and liver disease (all p ≤ 5.2 × 10-4) while ε2ε2 homozygosity increased risks of peripheral vascular disease, thromboembolism, arterial aneurysm, peptic ulcer, cervical disorders, and hallux valgus (all p ≤ 6.1 × 10-4). Sensitivity analyses using brain neuroimaging, blood biochemistry, anthropometric, and spirometric biomarkers supported the PheWAS findings on APOE associations with respective disease outcomes.InterpretationPheWAS confirms strong associations between APOE and AD, hypercholesterolaemia, and ischaemic heart disease, and suggests potential ε4-associated disease protection and harmful effects of the ε2ε2 genotype, for several conditions.FundingNational Health and Medical Research Council of Australia.
Project description:BackgroundIt is now well recognised that the risk of severe COVID-19 increases with some long-term conditions (LTCs). However, prior research primarily focuses on individual LTCs and there is a lack of data on the influence of multimorbidity (≥2 LTCs) on the risk of COVID-19. Given the high prevalence of multimorbidity, more detailed understanding of the associations with multimorbidity and COVID-19 would improve risk stratification and help protect those most vulnerable to severe COVID-19. Here we examine the relationships between multimorbidity, polypharmacy (a proxy of multimorbidity), and COVID-19; and how these differ by sociodemographic, lifestyle, and physiological prognostic factors.Methods and findingsWe studied data from UK Biobank (428,199 participants; aged 37-73; recruited 2006-2010) on self-reported LTCs, medications, sociodemographic, lifestyle, and physiological measures which were linked to COVID-19 test data. Poisson regression models examined risk of COVID-19 by multimorbidity/polypharmacy and effect modification by COVID-19 prognostic factors (age/sex/ethnicity/socioeconomic status/smoking/physical activity/BMI/systolic blood pressure/renal function). 4,498 (1.05%) participants were tested; 1,324 (0.31%) tested positive for COVID-19. Compared with no LTCs, relative risk (RR) of COVID-19 in those with 1 LTC was no higher (RR 1.12 (CI 0.96-1.30)), whereas those with ≥2 LTCs had 48% higher risk; RR 1.48 (1.28-1.71). Compared with no cardiometabolic LTCs, having 1 and ≥2 cardiometabolic LTCs had a higher risk of COVID-19; RR 1.28 (1.12-1.46) and 1.77 (1.46-2.15), respectively. Polypharmacy was associated with a dose response higher risk of COVID-19. All prognostic factors were associated with a higher risk of COVID-19 infection in multimorbidity; being non-white, most socioeconomically deprived, BMI ≥40 kg/m2, and reduced renal function were associated with the highest risk of COVID-19 infection: RR 2.81 (2.09-3.78); 2.79 (2.00-3.90); 2.66 (1.88-3.76); 2.13 (1.46-3.12), respectively. No multiplicative interaction between multimorbidity and prognostic factors was identified. Important limitations include the low proportion of UK Biobank participants with COVID-19 test data (1.05%) and UK Biobank participants being more affluent, healthier and less ethnically diverse than the general population.ConclusionsIncreasing multimorbidity, especially cardiometabolic multimorbidity, and polypharmacy are associated with a higher risk of developing COVID-19. Those with multimorbidity and additional factors, such as non-white ethnicity, are at heightened risk of COVID-19.
Project description:BackgroundThe independent and additive associations of walking pace and grip strength on dementia risk and the potential modifying effects of age, APOE phenotypes, and other dementia risk factors on the walking pace and dementia relationships demand further clarification. We aimed to investigate the independent and additive relationships of walking pace and handgrip strength on the risk of new-onset dementia and examine the potentially modifying effects of age, APOE phenotypes, lifestyle factors, and family history of dementia in the relationships.MethodsA total of 495,700 participants from the UK Biobank, who were free of dementia at baseline, were included in this study. Walking pace was self-defined as slow, average, or brisk. Handgrip strength was assessed by dynamometer and was divided into sex-specific quartiles. The APOE genotypes were determined by a combination variant of rs429358 and rs7412. Other dementia risk factors, including education, physical activity, hypertension, depression, diabetes, and family history of dementia, were also collected. The primary outcome was new-onset all-cause dementia.ResultsOver a median follow-up duration of 12.0 years, 3986 (0.8%) participants developed new-onset all-cause dementia. Compared with those with slow walking pace, participants with average (HR, 0.61; 95%CI: 0.55-0.68) or brisk (HR, 0.59; 95%CI: 0.52-0.67) walking pace had a significantly lower risk of new-onset all-cause dementia. Moreover, compared with those with both slow walking pace and lower handgrip strength (the first quartile), the lowest risk of new-onset all-cause dementia was observed in participants with both average or brisk walking pace and higher handgrip strength (the 2-4 quartiles) (HR, 0.45; 95%CI: 0.40-0.52). Notably, the negative relationship between walking pace and the risk of new-onset all-cause dementia was significantly reduced as APOE ε4 dosage increased (APOE ε4 dosages = 0 or 1: brisk vs. slow: HR, 0.55; 95%CI: 0.48-0.63; vs. APOE ε4 dosages = 2: brisk vs. slow: HR, 1.14; 95%CI: 0.77-1.68; P for interaction = 0.001) or age increased (< 58 [median]: brisk vs. slow: HR, 0.27; 95%CI: 0.18-0.41; vs. ≥ 58 years: brisk vs. slow: HR, 0.55; 95%CI: 0.48-0.63; P for interaction = 0.007).ConclusionsWalking pace was inversely associated with new-onset dementia in the general population, especially in younger participants and those with lower APOE ε4 dosage. Participants with both faster walking pace and higher handgrip strength had the lowest risk of dementia, suggesting that maintaining both high handgrip strength and fast walking pace may be a more comprehensive strategy for preventing dementia risk.
Project description:The apolipoprotein E (ApOE) ε4 allele is associated with neuropathological buildup of amyloid in the brain, and with lower performance on some laboratory measures of memory in some populations. In two studies, we tested whether ApOE genotype affects memory for everyday activities. In Study 1, participants aged 20-79 years old (n = 188) watched movies of actors engaged in daily activities and completed memory tests for the activities in the movies. In Study 2, cognitively healthy and demented older adults (n = 97) watched and remembered similar movies, and also underwent structural MRI scanning. All participants provided saliva samples for genetic analysis. In both samples we found that, in older adults, ApOE ε4 carriers demonstrated worse everyday memory performance than did ε4 noncarriers. In Study 2, ApOE ε4 carriers had smaller medial temporal lobes (MTL) volumes, and MTL volume mediated the relationship between ApOE genotype and everyday memory performance. These everyday memory tasks measure genetically determined cognitive decline that can occur prior to a clinical diagnosis of dementia. Further, these tasks are easily administered and may be a useful clinical tool in identifying ε4 carriers who may be at risk for MTL atrophy and further cognitive decline that is a common characteristic of the earliest stages of Alzheimer's disease.