Ontology highlight
ABSTRACT: Objectives
Sepsis is a leading cause of death in the United States. Putative targets to prevent systemic inflammatory response syndrome include antagonism of toll-like receptors 2 and 4 and CD44 receptors in vascular endothelial cells. Proteoglycan-4 is a mucinous glycoprotein that interacts with CD44 and toll-like receptor 4 resulting in a blockade of the NOD-like receptor pyrin domain-containing-3 pathway. We hypothesized that endothelial cells induced into a sepsis phenotype would have less interleukin-6 expression after recombinant human proteoglycan 4 treatment in vitro.Design
Enzyme-linked immunosorbent assay and reverse transcriptase-quantitative polymerase chain reaction to measure interleukin-6 protein and gene expression.Setting
Research laboratory.Subjects
Human umbilical vascular endothelial cells, human lung microvascular endothelial cells, and transgenic mouse (wild type) (Cd44 +/+/Prg4 +/+), Cd44 -/- (Cd44 tm1Hbg Prg4 +/+), Prg4 GT/GT (Cd44 +/+ Prg4 tm2Mawa/J), and double knockout (Cd44 tm1Hbg Prg4 tm2Mawa/J) lung microvascular endothelial cells.Interventions
Cells were treated with 100 or 250 ng/mL lipopolysaccharide-Escherichia coli K12 and subsequently treated with recombinant human proteoglycan 4 after 30 minutes. Interleukin-6 levels in conditioned media were measured via enzyme-linked immunosorbent assay and gene expression was measured via reverse transcriptase-quantitative polymerase chain reaction with ΔΔ-Ct analysis. Additionally, human umbilical vascular endothelial cells and human lung microvascular endothelial cells were treated with 1:10 diluted plasma from 15 patients with sepsis in culture media. After 30 minutes, either 50 or 100 µg/mL recombinant human proteoglycan 4 was administered. Interleukin-6 protein and gene expression were assayed. Proteoglycan 4 levels were also compared between control and sepsis patient plasma.Measurements and main results
Human umbilical vascular endothelial cell, human lung microvascular endothelial cell, and mouse lung microvascular endothelial cell treated with lipopolysaccharide had significantly increased interleukin-6 protein compared with controls. Recombinant human proteoglycan-4 significantly reduced interleukin-6 in human and mouse endothelial cells. Interleukin-6 gene expression was significantly increased after lipopolysaccharide treatment compared with controls. This response was reversed by 50 or 100 µg/mL recombinant human proteoglycan-4 in 80% of sepsis samples in human umbilical vascular endothelial cells and in 60-73% in human lung microvascular endothelial cells. In Cd44 -/- genotypes of the mouse lung microvascular endothelial cells, recombinant human proteoglycan-4 significantly reduced interleukin-6 protein levels after lipopolysaccharide treatment, indicating that Cd44 is not needed for recombinant human proteoglycan-4 to have an effect in a toll-like receptor 4 agonist inflammation model. Patient sepsis samples had higher plasma levels of native proteoglycan-4 than controls.Interpretation and conclusions
Recombinant human proteoglycan-4 is a potential adjunct therapy for sepsis patients and warrants future in vivo model studies.
SUBMITTER: Richendrfer HA
PROVIDER: S-EPMC7314356 | biostudies-literature |
REPOSITORIES: biostudies-literature