Emergent quantum Hall effects below 50 mT in a two-dimensional topological insulator.
Ontology highlight
ABSTRACT: The realization of the quantum spin Hall effect in HgTe quantum wells has led to the development of topological materials, which, in combination with magnetism and superconductivity, are predicted to host chiral Majorana fermions. However, the large magnetization in conventional quantum anomalous Hall systems makes it challenging to induce superconductivity. Here, we report two different emergent quantum Hall effects in (Hg,Mn)Te quantum wells. First, a previously unidentified quantum Hall state emerges from the quantum spin Hall state at an exceptionally low magnetic field of ~50 mT. Second, tuning toward the bulk p-regime, we resolve quantum Hall plateaus at fields as low as 20 to 30 mT, where transport is dominated by a van Hove singularity in the valence band. These emergent quantum Hall phenomena rely critically on the topological band structure of HgTe, and their occurrence at very low fields makes them an ideal candidate for realizing chiral Majorana fermions.
SUBMITTER: Shamim S
PROVIDER: S-EPMC7314521 | biostudies-literature | 2020 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA