Characterization of T-DM1-resistant breast cancer cells.
Ontology highlight
ABSTRACT: The development of targeted therapies has drastically improved the outcome of patients with different types of cancer. T-DM1 (trastuzumab-emtansine) is an antibody-drug conjugate used for the treatment of HER2-positive breast cancer combining the FDA approved mAb (monoclonal antibody) trastuzumab and the microtubule cytotoxic agent DM1 (emtansine). Despite clinical successes achieved by targeted therapies, a large number of patients develop resistance during treatment. To explore mechanisms of resistance to T-DM1, the MDA-MB-361 HER2-positive breast cancer cell line was exposed in vitro to T-DM1 in the absence or presence of ciclosporin A. Previously reported mechanisms of resistance such as trastuzumab-binding alterations, MDR1 upregulation, and SLC46A3 downregulation were not observed in these models. Despite a decrease in HER2 expression at the cell surface, both resistant cell lines remained sensitive to HER2 targeted therapies such as mAbs and tyrosine kinase inhibitors. In addition, sensitivity to DNA damaging agents and topoisomerase inhibitors were unchanged. Conversely resistance to anti-tubulin agents increased. Resistant cells displayed a decreased content of polymerized tubulin and a decreased content of ?III tubulin although the downregulation of ?III tubulin by siRNA in the parental cell line did not modified the sensitivity to T-DM1. Both cell lines resistant to T-DM1 also presented giant aneuploid cells. Several SLC (solute carrier) transporters were found to be differentially expressed in the resistant cells in comparison to parental cells. These results suggest that some characteristics such as increased baseline aneuploidy and altered intracellular drug trafficking might be involved in resistance to T-DM1.
SUBMITTER: Sauveur J
PROVIDER: S-EPMC7314699 | biostudies-literature | 2020 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA