Unknown

Dataset Information

0

A systematic evaluation of Mycobacterium tuberculosis Genome-Scale Metabolic Networks.


ABSTRACT: Metabolism underpins the pathogenic strategy of the causative agent of TB, Mycobacterium tuberculosis (Mtb), and therefore metabolic pathways have recently re-emerged as attractive drug targets. A powerful approach to study Mtb metabolism as a whole, rather than just individual enzymatic components, is to use a systems biology framework, such as a Genome-Scale Metabolic Network (GSMN) that allows the dynamic interactions of all the components of metabolism to be interrogated together. Several GSMNs networks have been constructed for Mtb and used to study the complex relationship between the Mtb genotype and its phenotype. However, the utility of this approach is hampered by the existence of multiple models, each with varying properties and performances. Here we systematically evaluate eight recently published metabolic models of Mtb-H37Rv to facilitate model choice. The best performing models, sMtb2018 and iEK1011, were refined and improved for use in future studies by the TB research community.

SUBMITTER: Lopez-Agudelo VA 

PROVIDER: S-EPMC7316355 | biostudies-literature | 2020 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

A systematic evaluation of Mycobacterium tuberculosis Genome-Scale Metabolic Networks.

López-Agudelo Víctor A VA   Mendum Tom A TA   Laing Emma E   Wu HuiHai H   Baena Andres A   Barrera Luis F LF   Beste Dany J V DJV   Rios-Estepa Rigoberto R  

PLoS computational biology 20200615 6


Metabolism underpins the pathogenic strategy of the causative agent of TB, Mycobacterium tuberculosis (Mtb), and therefore metabolic pathways have recently re-emerged as attractive drug targets. A powerful approach to study Mtb metabolism as a whole, rather than just individual enzymatic components, is to use a systems biology framework, such as a Genome-Scale Metabolic Network (GSMN) that allows the dynamic interactions of all the components of metabolism to be interrogated together. Several GS  ...[more]

Similar Datasets

| S-EPMC2955152 | biostudies-literature
| S-EPMC3488975 | biostudies-literature
| S-EPMC3852239 | biostudies-literature
| S-EPMC3136524 | biostudies-literature
| S-EPMC5526624 | biostudies-literature
| S-EPMC3171432 | biostudies-literature
| S-EPMC4664399 | biostudies-literature
| S-EPMC3725478 | biostudies-literature
| S-EPMC1550432 | biostudies-literature
| S-EPMC2791103 | biostudies-literature