Unknown

Dataset Information

0

PPG neurons in the nucleus of the solitary tract modulate heart rate but do not mediate GLP-1 receptor agonist-induced tachycardia in mice.


ABSTRACT:

Objective

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are used as anti-diabetic drugs and are approved for obesity treatment. However, GLP-1RAs also affect heart rate (HR) and arterial blood pressure (ABP) in rodents and humans. Although the activation of GLP-1 receptors (GLP-1R) is known to increase HR, the circuits recruited are unclear, and in particular, it is unknown whether GLP-1RAs activate preproglucagon (PPG) neurons, the brain source of GLP-1, to elicit these effects.

Methods

We investigated the effect of GLP-1RAs on heart rate in anaesthetized adult mice. In a separate study, we manipulated the activity of nucleus tractus solitarius (NTS) PPG neurons (PPGNTS) in awake, freely behaving transgenic Glu-Cre mice implanted with biotelemetry probes and injected with AAV-DIO-hM3Dq:mCherry or AAV-mCherry-FLEX-DTA.

Results

Systemic administration of the GLP-1RA Ex-4 increased resting HR in anaesthetized or conscious mice, but had no effect on ABP in conscious mice. This effect was abolished by ?-adrenoceptor blockade with atenolol, but unaffected by the muscarinic antagonist atropine. Furthermore, Ex-4-induced tachycardia persisted when PPGNTS neurons were ablated, and Ex-4 did not induce expression of the neuronal activity marker cFos in PPGNTS neurons. PPGNTS ablation or acute chemogenetic inhibition of these neurons via hM4Di receptors had no effect on resting HR. In contrast, chemogenetic activation of PPGNTS neurons increased resting HR. Furthermore, the application of GLP-1 within the subarachnoid space of the middle thoracic spinal cord, a major projection target of PPG neurons, increased HR.

Conclusions

These results demonstrate that both systemic application of Ex-4 or GLP-1 and chemogenetic activation of PPGNTS neurons increases HR. Ex-4 increases the activity of cardiac sympathetic preganglionic neurons of the spinal cord without recruitment of PPGNTS neurons, and thus likely recapitulates the physiological effects of PPG neuron activation. These neurons therefore do not play a significant role in controlling resting HR and ABP but are capable of inducing tachycardia and so are likely involved in cardiovascular responses to acute stress.

SUBMITTER: Holt MK 

PROVIDER: S-EPMC7317700 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

PPG neurons in the nucleus of the solitary tract modulate heart rate but do not mediate GLP-1 receptor agonist-induced tachycardia in mice.

Holt Marie K MK   Cook Daniel R DR   Brierley Daniel I DI   Richards James E JE   Reimann Frank F   Gourine Alexander V AV   Marina Nephtali N   Trapp Stefan S  

Molecular metabolism 20200521


<h4>Objective</h4>Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are used as anti-diabetic drugs and are approved for obesity treatment. However, GLP-1RAs also affect heart rate (HR) and arterial blood pressure (ABP) in rodents and humans. Although the activation of GLP-1 receptors (GLP-1R) is known to increase HR, the circuits recruited are unclear, and in particular, it is unknown whether GLP-1RAs activate preproglucagon (PPG) neurons, the brain source of GLP-1, to elicit these effects.<  ...[more]

Similar Datasets

| S-EPMC7141885 | biostudies-literature
| S-EPMC6371983 | biostudies-literature
| S-EPMC3680801 | biostudies-other
| S-EPMC6314470 | biostudies-literature
| S-EPMC2614086 | biostudies-literature
| S-EPMC2797442 | biostudies-literature
| S-EPMC4215190 | biostudies-literature
| S-EPMC2812602 | biostudies-literature
| S-EPMC3545464 | biostudies-literature
| S-EPMC3537851 | biostudies-literature