Leishmanicidal Activity of an In Silico-Screened Novel Inhibitor against Ascorbate Peroxidase of Leishmania donovani.
Ontology highlight
ABSTRACT: Peroxidases are a heterogeneous family of enzymes that have diverse biological functions. Ascorbate peroxidase is a redox enzyme that is reduced by trypanothione, which plays a central role in the redox defense system of Leishmania In view of developing new and novel therapeutics, we performed in silico studies in order to search for a ligand library and identify new drug candidates and their physiological roles against promastigotes and intracellular amastigotes of Leishmania donovani Our results demonstrated that the selected inhibitor ZINC96021026 has significant antileishmanial effect and effectively killed both free and intracellular forms of the parasite. ZINC96021026 was found to be identical to ML-240, a selective inhibitor of valosin-containing protein (VCP), or p97, a member of the AAA-ATPase protein family which was derived from the scaffold of N 2,N 4-dibenzylquinazoline-2,4-diamine (DBeQ), targeting the D2-ATPase domain of the enzyme. ZINC96021026 (ML-240) thus has a broad range of cellular functions, thought to be derived from its ability to unfold proteins or disassemble protein complexes, besides inhibiting the ascorbate peroxidase activity. ML-240 may inhibit the parasite's ascorbate peroxidase, leading to extensive apoptosis and inducing generation of reactive oxygen species. Taken together, our results demonstrated that ML-240 could be an attractive therapeutic option for treatment against leishmaniasis.
SUBMITTER: Kashif M
PROVIDER: S-EPMC7318017 | biostudies-literature | 2020 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA