Tetracationic Bis-Triarylborane 1,3-Butadiyne as a Combined Fluorimetric and Raman Probe for Simultaneous and Selective Sensing of Various DNA, RNA, and Proteins.
Ontology highlight
ABSTRACT: A bis-triarylborane tetracation (4-Ar2 B-3,5-Me2 C6 H2 )-C?C-C?C-(3,5-Me2 C6 H2 -4-BAr2 [Ar=(2,6-Me2 -4-NMe3 -C6 H2 )+ ] (24+ ) shows distinctly different behaviour in its fluorimetric response than that of our recently published bis-triarylborane 5-(4-Ar2 B-3,5-Me2 C6 H2 )-2,2'-(C4 H2 S)2 -5'-(3,5-Me2 C6 H2 -4-BAr2 ) (34+ ). Single-crystal X-ray diffraction data on the neutral bis-triarylborane precursor 2?N confirm its rod-like dumbbell structure, which is shown to be important for DNA/RNA targeting and also for BSA protein binding. Fluorimetric titrations with DNA/RNA/BSA revealed the very strong affinity of 24+ and indicated the importance of the properties of the linker connecting the two triarylboranes. Using the butadiyne rather than a bithiophene linker resulted in an opposite emission effect (quenching vs. enhancement), and 24+ bound to BSA 100?times stronger than 34+ . Moreover, 24+ interacted strongly with ss-RNA, and circular dichroism (CD) results suggest ss-RNA chain-wrapping around the rod-like bis-triarylborane dumbbell structure like a thread around a spindle, a very unusual mode of binding of ss-RNA with small molecules. Furthermore, 24+ yielded strong Raman/SERS signals, allowing DNA or protein detection at ca. 10?nm concentrations. The above observations, combined with low cytotoxicity, efficient human cell uptake and organelle-selective accumulation make such compounds intriguing novel lead structures for bio-oriented, dual fluorescence/Raman-based applications.
SUBMITTER: Amini H
PROVIDER: S-EPMC7318631 | biostudies-literature | 2020 May
REPOSITORIES: biostudies-literature
ACCESS DATA