Unknown

Dataset Information

0

Harvesting Patterns from Textual Web Sources with Tolerance Rough Sets.


ABSTRACT: Construction of knowledge repositories from web corpora by harvesting linguistic patterns is of benefit for many natural language-processing applications that rely on question-answering schemes. These methods require minimal or no human intervention and can recursively learn new relational facts-instances in a fully automated and scalable manner. This paper explores the performance of tolerance rough set-based learner with respect to two important issues: scalability and its effect on concept drift, by (1) designing a new version of the semi-supervised tolerance rough set-based pattern learner (TPL 2.0), (2) adapting a tolerance form of rough set methodology to categorize linguistic patterns, and (3) extracting categorical information from a large noisy dataset of crawled web pages. This work demonstrates that the TPL 2.0 learner is promising in terms of precision@30 metric when compared with three benchmark algorithms: Tolerant Pattern Learner 1.0, Fuzzy-Rough Set Pattern Learner, and Coupled Bayesian Sets-based learner.

SUBMITTER: Moghaddam HR 

PROVIDER: S-EPMC7318947 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3639949 | biostudies-literature
| S-EPMC6244804 | biostudies-other
| S-EPMC3790281 | biostudies-literature
| S-EPMC6327737 | biostudies-literature
| S-EPMC4166434 | biostudies-other
| S-EPMC5903897 | biostudies-other
| S-EPMC5038652 | biostudies-literature
| S-EPMC9285574 | biostudies-literature
| S-EPMC7987184 | biostudies-literature
| S-EPMC5028852 | biostudies-literature