Zn(II)-to-Cu(II) Transmetalation in an Amide Functionalized Complex and Catalytic Applications in Styrene Oxidation and Nitroaldol Coupling.
Ontology highlight
ABSTRACT: The mononuclear zinc(II) complex cis-[ZnL2(H2O)2] (1; L = 4-(pyridin-3-ylcarbamoyl)benzoate) was synthesized and characterized. By soaking crystals of 1 in a mixture of DMF-H2O solution containing a slight excess of Cu(NO3)2 × 3H2O a transmetalation reaction occurred affording the related copper(II) complex trans-[CuL2(H2O)2] (2). The structures of the compounds were authenticated by single crystal X-ray diffraction revealing, apart from a change in the isomerism, an alteration in the relative orientation of the chelating carboxylate groups and of the pyridine moieties. H-bond interactions stabilize both geometries and expand them into two-dimensional (2D) networks. The transmetalation was confirmed by SEM-EDS analysis. Moreover, the thermodynamic feasibility of the transmetalation is demonstrated by density-functional theory (DFT) studies. The catalytic activities of 1 and 2 for the oxidation of styrene and for the nitroaldol (Henry) C-C coupling reaction were investigated. The copper(II) compound 2 acts as heterogeneous catalyst for the microwave-assisted oxidation of styrene with aqueous hydrogen peroxide, yielding selectively (>99%) benzaldehyde up to 66% of conversion and with a turnover frequency (TOF) of 132 h-1. The zinc(II) complex 1 is the most active catalyst (up to 87% yield) towards the nitroaldol (Henry) coupling reaction between benzaldehyde and nitro-methane or -ethane to afford the corresponding ?-nitro alcohols. The reaction of benzaldehyde with nitroethane in the presence of 1 produced 2-nitro-1-phenylpropanol in the syn and the anti diastereoisomeric forms, with a considerable higher selectivity towards the former (66:34).
SUBMITTER: Paul A
PROVIDER: S-EPMC7321079 | biostudies-literature | 2020 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA