PRKCQ inhibition enhances chemosensitivity of triple-negative breast cancer by regulating Bim.
Ontology highlight
ABSTRACT: BACKGROUND:Protein kinase C theta, (PRKCQ/PKC?) is a serine/threonine kinase that is highly expressed in a subset of triple-negative breast cancers (TNBC) and promotes their growth, anoikis resistance, epithelial-mesenchymal transition (EMT), and invasion. Here, we show that PRKCQ regulates the sensitivity of TNBC cells to apoptosis triggered by standard-of-care chemotherapy by regulating levels of pro-apoptotic Bim. METHODS:To determine the effects of PRKCQ expression on chemotherapy-induced apoptosis, shRNA and cDNA vectors were used to modulate the PRKCQ expression in MCF-10A breast epithelial cells or triple-negative breast cancer cells (MDA-MB231Luc, HCC1806). A novel PRKCQ small-molecule inhibitor, 17k, was used to inhibit kinase activity. Viability and apoptosis of cells treated with PRKCQ cDNA/shRNA/inhibitor +/-chemotherapy were measured. Expression levels of Bcl2 family members were assessed. RESULTS:Enhanced expression of PRKCQ is sufficient to suppress apoptosis triggered by paclitaxel or doxorubicin treatment. Downregulation of PRKCQ also enhanced the apoptosis of chemotherapy-treated TNBC cells. Regulation of chemotherapy sensitivity by PRKCQ mechanistically occurs via regulation of levels of Bim, a pro-apoptotic Bcl2 family member; suppression of Bim prevents the enhanced apoptosis observed with combined PRKCQ downregulation and chemotherapy treatment. Regulation of Bim and chemotherapy sensitivity is significantly dependent on PRKCQ kinase activity; overexpression of a catalytically inactive PRKCQ does not suppress Bim or chemotherapy-associated apoptosis. Furthermore, PRKCQ kinase inhibitor treatment suppressed growth, increased anoikis and Bim expression, and enhanced apoptosis of chemotherapy-treated TNBC cells, phenocopying the effects of PRKCQ downregulation. CONCLUSIONS:These studies support PRKCQ inhibition as an attractive therapeutic strategy and complement to chemotherapy to inhibit the growth and survival of TNBC cells.
SUBMITTER: Byerly JH
PROVIDER: S-EPMC7322866 | biostudies-literature | 2020 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA