Project description:Genetic variants that disrupt the function of the PCSK9 (proprotein convertase subtilisin kexin type 9) and APOB (apolipoprotein B)genes result in lower serum low-density lipoprotein cholesterol (LDL-C) levels and subsequently confer protection against coronary heart disease (CHD). The objective of this study was to measure the prevalence and selective advantage of such variants among healthy older individuals without a history of CHD. We performed targeted sequencing of the PCSK9 and APOB genes in 13 131 healthy individuals without CHD aged 70 years or older enrolled into the ASPirin in Reducing Events in the Elderly trial. We detected variants in the PCSK9 and APOB genes with predicted loss-of-function. We associated variant carrier status with serum LDL-C and total cholesterol (TC) levels at the time of study enrolment, adjusting for statin use. We detected 22 different rare PCSK9/APOB candidate variants with putative lipid-lowering effect, carried by 104 participants (carrier rate 1 in 126). Serum LDL-C and TC concentrations for rare PCSK9/APOB variant carriers were consistently lower than non-carriers. Rare variant carrier status was associated with 19.4 mg/dL (14.6%) lower LDL-C, compared with non-carriers (p≤0.001, adjusted for statin use). Statin prescriptions were less prevalent in rare variant carriers (16%) than non-carriers (35%). The more common PCSK9 R46L variant (rs11591147-T) was associated with 15.5 mg/dL (11.8%) lower LDL-C in heterozygotes, and 25.2 mg/dL (19.2%) lower LDL-C in homozygotes (both p≤0.001). Lipid-lowering genetic variants are carried by healthy older individuals and contribute to CHD-free survival. NCT01038583.
Project description:Tissue-tissue communication by endocrine factors is a vital mechanism for physiologic homeostasis. A systems genetics analysis of transcriptomic and functional data from a cohort of diverse, inbred strains of mice predicted that coagulation factor XI (FXI), a liver-derived protein, protects against diastolic dysfunction, a key trait of heart failure with preserved ejection fraction. This was confirmed using gain- and loss-of-function studies, and FXI was found to activate the bone morphogenetic protein (BMP)-SMAD1/5 pathway in the heart. The proteolytic activity of FXI is required for the cleavage and activation of extracellular matrix-associated BMP7 in the heart, thus inhibiting genes involved in inflammation and fibrosis. Our results reveal a protective role of FXI in heart injury that is distinct from its role in coagulation.
Project description:Little is known about the association of the TIMD4 (T-cell immunoglobulin and mucin domain 4 gene)-HAVCR1 (hepatitis A virus cellular receptor 1) variants and lipid metabolism, the risk of coronary heart disease (CHD) and ischemic stroke (IS). The present study aimed to determine the TIMD4-HAVCR1 variants, their haplotypes and gene-environment interactions on serum lipid levels, the risk of CHD and IS, and the lipid-lowering efficacy of atorvastatin in a southern Chinese Han population. Genotypes of three variants in 622 controls, 579 CHD, and 546 IS patients were determined by the Snapshot technology. Atorvastatin calcium tablet (20 mg/day) was given in 724 hyperlipidemic patients for 8 weeks after genotyping. The rs12522248 genotypic and allelic frequencies were different between controls and patients, and were associated with the risk of CHD and IS. The rs1501908G-rs12522248T-rs2036402T haplotype was associated with an increased risk of CHD; the G-C-T haplotype was associated with lower risk of CHD; and the C-C-C haplotype was associated with an increased risk of IS. Variants and their haplotypes in controls were associated with triglyceride (rs1501908), low-density lipoprotein cholesterol (LDL-C, rs1501908, G-T-T), high-density lipoprotein cholesterol (HDL-C, rs12522248, C-C-C) and the ratio of total cholesterol (TC) to HDL-C (C-C-C). Interactions of rs1501908- and rs2036402-alcohol (HDL-C); rs1501908- and rs12522248-high body mass index (hBMI, ?24 kg/m2; TC); and TIMD4-HAVCR1 variants-atorvastatin on several lipid parameters were detected. Interactions of rs12522248TC/CC-hBMI, G-T-T-, and C-C-C-smoking on the risk of CHD; and C-C-C-smoking, C-C-C-, and G-C-T-hBMI on the risk of IS were also observed. These findings suggest that the TIMD4-HAVCR1 variants may be the genetic risk factors for CHD and IS.
Project description:Background and purposeCoagulation factor XI (FXI) has an important role in the propagation and stabilization of a thrombus upon vessel injury. High FXI levels have been implicated in thrombotic diseases including ischemic stroke. The aim of our study was to investigate whether FXI gene (F11) variants are associated with ischemic stroke.MethodsThe discovery sample, the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS), included 844 patients with ischemic stroke and 668 controls, all aged 18-70 years. Replication was performed in the Lund Stroke Register (LSR) and Malmö Diet and Cancer study (MDC), together including 1213 patients and 788 controls up to 70 years of age, and in total 3145 patients and 1793 controls (18-102 years). Seven F11 single-nucleotide polymorphisms (SNPs) were selected using a tagging approach.ResultsThe SNPs rs3733403, rs925451, and rs1593 showed independent associations with overall ischemic stroke in SAHLSIS, ORs of 0.74 (95% CI 0.59-0.94), 1.24 (95% CI 1.06-1.46), and 0.70 (95% CI 0.55-0.90), respectively. The association for rs925451 was replicated in the LSR and MDC sample in a pre-specified analysis of subjects aged 70 years or younger, OR of 1.16 (95% CI 1.00-1.34), whereas no SNP was replicated when all ages were included. In line with this, one F11 haplotype was associated with overall ischemic stroke in the discovery sample and in the replication sample ?70 years.ConclusionsWe found significant associations between F11 variation and overall ischemic stroke up to 70 years of age. These findings motivate further studies on the role of F11 in ischemic stroke, especially in younger individuals.
Project description:Endothelial cells participate in the pathophysiology of ischemic AKI by increasing the expression of cell adhesion molecules and by recruiting inflammatory cells. We previously showed that endothelial Krüppel-like factor 4 (Klf4) regulates vascular cell adhesion molecule 1 (Vcam1) expression and neointimal formation after carotid injury. In this study, we determined whether endothelial Klf4 is involved in ischemic AKI using endothelial Klf4 conditional knockout (Klf4 cKO) mice generated by breeding Tek-Cre mice and Klf4 floxed mice. Klf4 cKO mice were phenotypically normal before surgery. However, after renal ischemia-reperfusion injury, Klf4 cKO mice exhibited elevated serum levels of urea nitrogen and creatinine and aggravated renal histology compared with those of Klf4 floxed controls. Moreover, Klf4 cKO mice exhibited enhanced accumulation of neutrophils and lymphocytes and elevated expression of cell adhesion molecules, including Vcam1 and Icam1, in injured kidneys. Notably, statins ameliorated renal ischemia-reperfusion injury in control mice but not in Klf4 cKO mice. Mechanistic analyses in cultured endothelial cells revealed that statins increased KLF4 expression and that KLF4 mediated the suppressive effect of statins on TNF-?-induced VCAM1 expression by reducing NF-?B binding to the VCAM1 promoter. These results provide evidence that endothelial Klf4 is renoprotective and mediates statin-induced protection against ischemic AKI by regulating the expression of cell adhesion molecules and concomitant recruitment of inflammatory cells.
Project description:Essentials Coagulation factors (F) IX and XI have been implicated in cardiovascular disease (CVD) risk. We studied associations of FIX and FXI with incident coronary heart disease (CHD) and stroke. Higher FIX antigen was associated with incident CHD risk in blacks but not whites. Higher levels of FIX antigen may be a CHD risk factor among blacks.SummaryBackground Recent studies have suggested the importance of coagulation factor IX and FXI in cardiovascular disease (CVD) risk. Objectives To determine whether basal levels of FIX or FXI antigen were associated with the risk of incident coronary heart disease (CHD) or ischemic stroke. Patients/Methods The REasons for Geographic And Racial Differences in Stroke (REGARDS) study recruited 30 239 participants across the contiguous USA between 2003 and 2007. In a case-cohort study within REGARDS, FIX and FXI antigen were measured in participants with incident CHD (n = 609), in participants with incident ischemic stroke (n = 538), and in a cohort random sample (n = 1038). Hazard ratios (HRs) for CHD and ischemic stroke risk were estimated with Cox models per standard deviation higher FIX or FXI level, adjusted for CVD risk factors. Results In models adjusting for CHD risk factors, higher FIX levels were associated with incident CHD risk (HR 1.19; 95% confidence interval [CI] 1.01-1.40) and the relationship of higher FXI levels was slightly weaker (HR 1.15; 95% CI 0.97-1.36). When stratified by race, the HR of FIX was higher in blacks (HR 1.39; 95% CI 1.10-1.75) than in whites (HR 1.06; 95% CI 0.86-1.31). After adjustment for stroke risk factors, there was no longer an association of FIX levels with ischemic stroke, whereas the association of FXI levels with ischemic stroke was slightly attenuated. Conclusions Higher FIX antigen levels were associated with incident CHD in blacks but not in whites. FIX levels may increase CHD risk among blacks.
Project description:ImportanceTriglycerides and cholesterol are both carried in plasma by apolipoprotein B (ApoB)-containing lipoprotein particles. It is unknown whether lowering plasma triglyceride levels reduces the risk of cardiovascular events to the same extent as lowering low-density lipoprotein cholesterol (LDL-C) levels.ObjectiveTo compare the association of triglyceride-lowering variants in the lipoprotein lipase (LPL) gene and LDL-C-lowering variants in the LDL receptor gene (LDLR) with the risk of cardiovascular disease per unit change in ApoB.Design, setting, and participantsMendelian randomization analyses evaluating the associations of genetic scores composed of triglyceride-lowering variants in the LPL gene and LDL-C-lowering variants in the LDLR gene, respectively, with the risk of cardiovascular events among participants enrolled in 63 cohort or case-control studies conducted in North America or Europe between 1948 and 2017.ExposuresDifferences in plasma triglyceride, LDL-C, and ApoB levels associated with the LPL and LDLR genetic scores.Main outcomes and measuresOdds ratio (OR) for coronary heart disease (CHD)-defined as coronary death, myocardial infarction, or coronary revascularization-per 10-mg/dL lower concentration of ApoB-containing lipoproteins.ResultsA total of 654 783 participants, including 91 129 cases of CHD, were included (mean age, 62.7 years; 51.4% women). For each 10-mg/dL lower level of ApoB-containing lipoproteins, the LPL score was associated with 69.9-mg/dL (95% CI, 68.1-71.6; P = 7.1 × 10-1363) lower triglyceride levels and 0.7-mg/dL (95% CI, 0.03-1.4; P = .04) higher LDL-C levels; while the LDLR score was associated with 14.2-mg/dL (95% CI, 13.6-14.8; P = 1.4 × 10-465) lower LDL-C and 1.9-mg/dL (95% CI, 0.1-3.9; P = .04) lower triglyceride levels. Despite these differences in associated lipid levels, the LPL and LDLR scores were associated with similar lower risk of CHD per 10-mg/dL lower level of ApoB-containing lipoproteins (OR, 0.771 [95% CI, 0.741-0.802], P = 3.9 × 10-38 and OR, 0.773 [95% CI, 0.747-0.801], P = 1.1 × 10-46, respectively). In multivariable mendelian randomization analyses, the associations between triglyceride and LDL-C levels with the risk of CHD became null after adjusting for differences in ApoB (triglycerides: OR, 1.014 [95% CI, 0.965-1.065], P = .19; LDL-C: OR, 1.010 [95% CI, 0.967-1.055], P = .19; ApoB: OR, 0.761 [95% CI, 0.723-0.798], P = 7.51 × 10-20).Conclusions and relevanceTriglyceride-lowering LPL variants and LDL-C-lowering LDLR variants were associated with similar lower risk of CHD per unit difference in ApoB. Therefore, the clinical benefit of lowering triglyceride and LDL-C levels may be proportional to the absolute change in ApoB.
Project description:Factor I (FI) is one of the main inhibitors of complement activity, and numerous rare coding variants have been reported in patients with age-related macular degeneration, atypical hemolytic uremic syndrome and C3 glomerulopathy. Since many of these variants are of unknown clinical significance, this study aimed to determine the effect of rare coding variants in the complement factor I (CFI) gene on FI expression. We measured FI levels in plasma samples of carriers of rare coding variants and in vitro in the supernatants of epithelial cells expressing recombinant FI. FI levels were measured in 177 plasma samples of 155 individuals, carrying 24 different rare coding variants in CFI. In carriers of the variants p.Gly119Arg, p.Leu131Arg, p.Gly188Ala and c.772G>A (r.685_773del), significantly reduced FI plasma levels were detected. Furthermore, recombinant FI expression levels were determined for 126 rare coding variants. Of these variants 68 (54%) resulted in significantly reduced FI expression in supernatant compared to wildtype (WT). The recombinant protein expression levels correlated significantly with the FI level in plasma of carriers of CFI variants. In this study, we performed the most comprehensive FI expression level analysis of rare coding variants in CFI to date. More than half of CFI variants lead to reduced FI expression, which might impair complement regulation in vivo. Our study will aid the interpretation of rare coding CFI variants identified in clinical practice, which is in particular important in light of patient inclusion in ongoing clinical trials for CFI gene supplementation in AMD.
Project description:NFAT5 is a transcription factor that protects the kidney from hypertonic stress and also is activated by hypoxia. We hypothesized that NFAT5 mitigates the extent of renal damage induced by ischemia-reperfusion injury (IRI). Mice were subjected to IRI by unilateral clamping of the left renal pedicle for 30 minutes followed by reperfusion. After 3 hours of reperfusion, the level of NFAT5 mRNA was similar in contralateral and clamped kidneys. However, after 48 hours, NFAT5 mRNA accumulation increased ≈3-fold in both outer medulla and medullary thick ascending limb tubules. NFAT1 levels were elevated at 3 hours but did not increase further at 48 hours. Mice were then either pretreated for 72 hours with an intrarenal injection of a lentivirus short-hairpin RNA construct to silence NFAT5 (enhanced green fluorescent protein-U6-N5-ex8) or a control vector (enhanced green fluorescent protein-U6) before induction of IRI. Neutrophil gelatinase-associated lipocalin and kidney ischemia molecule-1 mRNA levels increased after IRI and further increased after knockdown of NFAT5, suggesting that silencing of NFAT5 exacerbates renal damage during IRI. In contrast, silencing of NFAT1 had no effect on the levels of neutrophil gelatinase-associated lipocalin or kidney ischemia molecule-1 mRNA. Hematoxylin and eosin staining revealed patchy denudation of renal epithelial cells and tubular dilation when NFAT5 was silenced. The number of TUNEL-positive cells in the outer and inner medulla of the clamped kidney increased nearly 2-fold after knockdown of NFAT5 and was associated with an increase in the number of caspase-3-positive cells. Collectively, the data suggest that NFAT5 is part of a protective mechanism that limits renal damage induced by IRI.
Project description:The genetic architecture of ischemic stroke is complex and is likely to include rare or low frequency variants with high penetrance and large effect sizes. Such variants are likely to provide important insights into disease pathogenesis compared to common variants with small effect sizes. Because a significant portion of human functional variation may derive from the protein-coding portion of genes we undertook a pilot study to identify variation across the human exome (i.e., the coding exons across the entire human genome) in 10 ischemic stroke cases. Our efforts focused on evaluating the feasibility and identifying the difficulties in this type of research as it applies to ischemic stroke. The cases included 8 African-Americans and 2 Caucasians selected on the basis of similar stroke subtypes and by implementing a case selection algorithm that emphasized the genetic contribution of stroke risk. Following construction of paired-end sequencing libraries, all predicted human exons in each sample were captured and sequenced. Sequencing generated an average of 25.5 million read pairs (75 bp×2) and 3.8 Gbp per sample. After passing quality filters, screening the exomes against dbSNP demonstrated an average of 2839 novel SNPs among African-Americans and 1105 among Caucasians. In an aggregate analysis, 48 genes were identified to have at least one rare variant across all stroke cases. One gene, CSN3, identified by screening our prior GWAS results in conjunction with our exome results, was found to contain an interesting coding polymorphism as well as containing excess rare variation as compared with the other genes evaluated. In conclusion, while rare coding variants may predispose to the risk of ischemic stroke, this fact has yet to be definitively proven. Our study demonstrates the complexities of such research and highlights that while exome data can be obtained, the optimal analytical methods have yet to be determined.