Project description:Since 24 states and the District of Columbia have legalized marijuana in some form, suppliers of legal marijuana have developed Cannabis sativa products for use in electronic cigarettes (e-cigarettes). Personal battery powered vaporizers, or e-cigarettes, were developed to deliver a nicotine vapor such that smokers could simulate smoking tobacco without the inherent pathology of inhaled tobacco smoke. The liquid formulations used in these devices are comprised of an active ingredient such as nicotine mixed with vegetable glycerin (VG) and/or propylene glycol (PG) and flavorings. A significant active ingredient of C. sativa, cannabidiol (CBD), has been purported to have anti-convulsant, anti-nociceptive, and anti-psychotic properties. These properties have potential medical therapies such as intervention of addictive behaviors, treatments for epilepsy, management of pain for cancer patients, and treatments for schizophrenia. However, CBD extracted from C. sativa remains a DEA Schedule I drug since it has not been approved by the FDA for medical purposes. Two commercially available e-cigarette liquid formulations reported to contain 3.3 mg/mL of CBD as the active ingredient were evaluated. These products are not regulated by the FDA in manufacturing or in labeling of the products and were found to contain 6.5 and 7.6 mg/mL of CBD in VG and PG with a variety of flavoring agents. Presently, while labeled as to content, the quality control of manufacturers and the relative safety of these products is uncertain.
Project description:ObjectivesMap the current landscape of commercially available artificial intelligence (AI) software for radiology and review the availability of their scientific evidence.MethodsWe created an online overview of CE-marked AI software products for clinical radiology based on vendor-supplied product specifications ( www.aiforradiology.com ). Characteristics such as modality, subspeciality, main task, regulatory information, deployment, and pricing model were retrieved. We conducted an extensive literature search on the available scientific evidence of these products. Articles were classified according to a hierarchical model of efficacy.ResultsThe overview included 100 CE-marked AI products from 54 different vendors. For 64/100 products, there was no peer-reviewed evidence of its efficacy. We observed a large heterogeneity in deployment methods, pricing models, and regulatory classes. The evidence of the remaining 36/100 products comprised 237 papers that predominantly (65%) focused on diagnostic accuracy (efficacy level 2). From the 100 products, 18 had evidence that regarded level 3 or higher, validating the (potential) impact on diagnostic thinking, patient outcome, or costs. Half of the available evidence (116/237) were independent and not (co-)funded or (co-)authored by the vendor.ConclusionsEven though the commercial supply of AI software in radiology already holds 100 CE-marked products, we conclude that the sector is still in its infancy. For 64/100 products, peer-reviewed evidence on its efficacy is lacking. Only 18/100 AI products have demonstrated (potential) clinical impact.Key points• Artificial intelligence in radiology is still in its infancy even though already 100 CE-marked AI products are commercially available. • Only 36 out of 100 products have peer-reviewed evidence of which most studies demonstrate lower levels of efficacy. • There is a wide variety in deployment strategies, pricing models, and CE marking class of AI products for radiology.
Project description:The dissemination of antibiotic resistance genes (ARGs) in the environment contributes to the global rise in antibiotic resistant infections. Therefore, it is of importance to further research the exposure pathways of these emerging contaminants to humans. This study explores commercially available garden products containing animal manure as a source of ARGs in a survey of 34 garden products, 3 recently landscaped soils, and 5 native soils. DNA was extracted from these soils and quantified for 5 ARGs, intI1, and 16S rRNA. This study found that both absolute and relative gene abundances in garden products ranged from approximately two to greater than four orders of magnitude higher than those observed in native soils. Garden products with Organic Materials Review Institute (OMRI) certification did not have significantly different ARG abundances. Results here indicate that garden products are important sources of ARGs to gardens, lawns, and parks.
Project description:Plant small RNAs are a diverse and complex set of molecules, ranging in length from 21 to 24 nt, involved in a wide range of essential biological processes. Nowadays, high-throughput sequencing is the most commonly used method for the discovery and quantification of small RNAs. However, it is known that several biases can occur during the preparation of small RNA libraries, especially using low input RNA. We used two types of plant biological samples to evaluate the performance of seven commercially available methods for small RNA library construction, using different RNA input amounts. We show that when working with plant material, library construction methods have differing capabilities to capture small RNAs, and that different library construction methods provide better results when applied to the detection of microRNAs, phased small RNAs, or tRNA-derived fragments.
Project description:Since several years there has been a demand for food products free of palm oil, noticeable in the Western European market. Alternatives based on liquid oils, fully hydrogenated fats, and exotic fats like shea and sal etc., have been developed by the research groups of several specialty oils and fats suppliers. This article describes the advantages and disadvantages of those products and compares them to similar products based on palm oil. It is also discussed how reasonable the replacement of palm products would be, since sustainable and 3-MCPD/glycidolester-reduced palm based specialty oils are also available on the market.
Project description:Given the potential for human exposure to silver nanoparticles from spray disinfectants and dietary supplements, we characterized the silver-containing nanoparticles in 22 commercial products that advertised the use of silver or colloidal silver as the active ingredient. Characterization parameters included: total silver, fractionated silver (particulate and dissolved), primary particle size distribution, hydrodynamic diameter, particle number, and plasmon resonance absorbance. A high degree of variability between claimed and measured values for total silver was observed. Only 7 of the products showed total silver concentrations within 20% of their nominally reported values. In addition, significant variations in the relative percentages of particulate vs. soluble silver were also measured in many of these products reporting to be colloidal. Primary silver particle size distributions by transmission electron microscopy (TEM) showed two populations of particles - smaller particles (<5nm) and larger particles between 20 and 40nm. Hydrodynamic diameter measurements using nanoparticle tracking analysis (NTA) correlated well with TEM analysis for the larger particles. Z-average (Z-Avg) values measured using dynamic light scattering (DLS); however, were typically larger than both NTA or TEM particle diameters. Plasmon resonance absorbance signatures (peak absorbance at around 400nm indicative of metallic silver nanoparticles) were only noted in 4 of the 9 yellow-brown colored suspensions. Although the total silver concentrations were variable among products, ranging from 0.54mg/L to 960mg/L, silver containing nanoparticles were identified in all of the product suspensions by TEM.
Project description:The use of colloidal silver-containing products as dietary supplements, immune boosters and surface disinfectants has increased in recent years which has elevated the potential for human exposure to silver nanoparticles and ions. Product mislabeling and long-term use of these products may put consumers at risk for adverse health outcomes including argyria. This study assessed several physical and chemical characteristics of five commercial products as well as their cytotoxicity using a rat intestinal epithelial cell (IEC-6) model. Concentrations of silver were determined for both the soluble and particulate fractions of the products. Primary particle size distribution and elemental composition were determined by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. Hydrodynamic diameters were measured using nanoparticle tracking analysis (NTA) and dynamic light scattering (DLS). The effect of gastrointestinal (GI) simulation on the colloidal silver products was determined using two systems. First, physical and chemical changes of the silver nanoparticles in these products was assessed after exposure to Synthetic Stomach Fluid (SSF) resulting in particle agglomeration, and the appearance of AgCl on the surfaces and between particles. IEC-6 cells were exposed for 24 h to dilutions of the products and assessed for cell viability. The products were also treated with a three-stage simulated GI system (stomach and intestinal fluids) prior to exposure of the IEC-6 cells to the isolated silver nanoparticles. Cell viability was affected by each of the consumer products. Based on the silver nitrate and commercial silver nanoparticle dose response, the cytotoxicity for each of the colloidal silver products was attributed to the particulate silver, soluble silver or non?silver matrix constituents.
Project description:We compared the performance of six commercial kits (QIAseq, SMARTer, CATS, CleanTag, srLp, TailorMix) capable of handling <100ng total RNA input for miRNA detection sensitivity, reliability, titration response and ability to detect differentially expressed miRNAs at different amounts of synthetic miRNAs. We observed differences in detection sensitivity between the kits, but none were able to detect the full repertoire of expected miRNAs. The reliability within the replicates of all kits was good, while larger differences were observed between the kits, although none could accurately quantify the majority of miRNAs.
Project description:ObjectivesMouthwashes, a cornerstone of oral and dental hygiene, play a pivotal role in combating the formation of dental plaque, a leading cause of periodontal disease and dental caries. This study aimed to review the composition of mouthwashes found on retail shelves in Turkey and evaluate their prevalence and side effects, if any.MethodsThe mouthwashes examined were sourced from the 5 largest chain stores in each district of Istanbul. A comprehensive list of the constituents was meticulously recorded. The research was supported by an extensive compilation of references from scholarly databases such as Google Scholar, PubMed, and ScienceDirect. Through rigorous analysis, the relative proportions of mouthwash ingredients and components were determined.ResultsA total of 45 distinctive variations of mouthwashes, representing 17 prominent brands, were identified. Amongst the 116 ingredients discovered, 70 were evaluated for potential adverse effects and undesirable side effects. The aroma of the mouthwash (n = 45; 100%), as welll as their sodium fluoride (n = 28; 62.22%), sodium saccharin (n = 29; 64.44%), sorbitol (n = 21; 46.6%), and propylene glycol (n = 28; 62.22%) content were the main undesireable features.ConclusionsThe limited array of mouthwashes found on store shelves poses a concern for both oral and public health. Furthermore, the intricate composition of these products, consisting of numerous ingredients with the potential for adverse effects, warrants serious attention. Both clinicians and patients should acknowledge the importance and unwarranted side effects of the compnents of the mouthwashes.