Project description:BACKGROUND:Alpha-1-antitrypsin (AAT) deficiency (AATD) of Z, Mmalton, Siiyama type is associated with liver storage of the mutant proteins and liver disease. The Z variant can be diagnosed on isoelectric focusing (IEF) while Mmalton and Siiyama may be missed or misdiagnosed with this technique. Therefore, molecular analysis is mandatory for their characterization. In particular, that holds true for the Mmalton variant as on IEF profile it resembles the wild M2 subtype. METHODS:This is a retrospective analysis involving review of medical records and of liver biopsy specimens from a series of Mmalton, Z and Siiyama Alpha-1-antitrypsin deficiency patients. The review has been implemented by additional histological stains, electron microscopic observations and 3-D modeling studies of the sites of the mutations. RESULTS:Z, Mmalton and Siiyama liver specimen contained characteristic intrahepatocytic PAS-D globules. The globules differed in the three variants as only Mmalton cases showed dark basophilic precipitates within the AAT inclusions. The precipitates were visualized in haematoxylin-eosin (H.E.) stained preparations and corresponded to calcium precipitates as demonstrated by von Kossa staining. On immunohistochemistry, ZAAT inclusions were stained by polyclonal as well as monoclonal noncommercial anti-AAT antibody (AZT11), whilst Mmalton and Siiyama inclusion bodies remained negative with the monoclonal anti-Z antibody. 3-D protein analysis allowed to predict more severe misfolding of the Mmalton molecule as compared to Z and Siiyama that could trigger anomalous interaction with endoplasmic reticulum chaperon proteins, namely calcium binding proteins. CONCLUSIONS:Mmalton AAT inclusion bodies contain calcium precipitates inside them that allow the differential diagnosis with Siiyama and ZAAT inclusions in routine histological sections. The study has confirmed the specificity of the monoclonal AZT11 for the Z mutant. Thus, the combination of these two features is crucial for the distinction between the three variants and for predicting the genotype, whose confirmation would definitely require molecular analysis. Our study provides new data on the pathomorphogenesis of Mmalton inclusion bodies whose mineralization could play a central role in disease pathogenesis of Mmalton that is distinct from the Z and Siiyama variants. Calcium is known to be a major effector of cell death either via the increased intracellular concentration or the alteration of homeostasis.
Project description:Alpha 1-antitrypsin (AAT) deficiency, a hereditary disorder characterized by low serum levels of functional AAT, is associated with early development of panacinar emphysema. AAT inhibits serine proteases, including neutrophil elastase, protecting the lung from proteolytic destruction. Cigarette smoke, pollution, and inflammatory cell-mediated oxidation of methionine (M) 351 and 358 inactivates AAT, limiting lung protection. In vitro studies using amino acid substitutions demonstrated that replacing M351 with valine (V) and M358 with leucine (L) on a normal M1 alanine (A) 213 background provided maximum antiprotease protection despite oxidant stress. We hypothesized that a onetime administration of a serotype 8 adeno-associated virus (AAV8) gene transfer vector coding for the oxidation-resistant variant AAT (A213/V351/L358; 8/AVL) would maintain antiprotease activity under oxidant stress compared with normal AAT (A213/M351/M358; 8/AMM). 8/AVL was administered via intravenous (IV) and intrapleural (IPL) routes to C57BL/6 mice. High, dose-dependent AAT levels were found in the serum and lung epithelial lining fluid (ELF) of mice administered 8/AVL or 8/AMM by IV or IPL. 8/AVL serum and ELF retained serine protease-inhibitory activity despite oxidant stress while 8/AMM function was abolished. 8/AVL represents a second-generation gene therapy for AAT deficiency providing effective antiprotease protection even with oxidant stress.
Project description:Background: Alpha-1 antitrypsin deficiency (A1ATD) is a progressive lung disease caused by inherited pathogenic variants in the SERPINA1 gene. However, their actual role in maintenance of structural and functional characteristics of the corresponding α-1 anti-trypsin (A1AT) protein is not well characterized. Methods: The A1ATD causative SERPINA1 missense variants were initially collected from variant databases, and they were filtered based on their pathogenicity potential. Then, the tertiary protein models were constructed and the impact of individual variants on secondary structure, stability, protein-protein interactions, and molecular dynamic (MD) features of the A1AT protein was studied using diverse computational methods. Results: We identified that A1ATD linked SERPINA1 missense variants like F76S, S77F, L278P, E288V, G216C, and H358R are highly deleterious as per the consensual prediction scores of SIFT, PolyPhen, FATHMM, M-CAP and REVEL computational methods. All these variants were predicted to alter free energy dynamics and destabilize the A1AT protein. These variants were seen to cause minor structural drifts at residue level (RMSD = <2Å) of the protein. Interestingly, S77F and L278P variants subtly alter the size of secondary structural elements like beta pleated sheets and loops. The residue level fluctuations at 100 ns simulation confirm the highly damaging structural consequences of all the six missense variants on the conformation dynamics of the A1AT protein. Moreover, these variants were also predicted to cause functional deformities by negatively impacting the binding energy of A1AT protein with NE ligand molecule. Conclusion: This study adds a new computational biology dimension to interpret the genotype-protein phenotype relationship between SERPINA1 pathogenic variants with its structural plasticity and functional behavior with NE ligand molecule contributing to the Alpha-1-antitrypsin deficiency. Our results support that A1ATD complications correlates with the conformational flexibility and its propensity of A1AT protein polymerization when misfolded.
Project description:PurposeTo report a case of severe bilateral descemetoceles in a patient with alpha-1 antitrypsin (A1AT) deficiency during intensive care unit hospitalization.ObservationsA 42-year-old male presented with sub-acute bilateral vision loss during an intensive care unit hospitalization following liver and kidney transplantations. On exam, this patient's best-corrected visual acuity was 20/80 in both eyes. There were bilateral descemetoceles inferotemporally in both eyes with overlying epithelial defects and dense surrounding punctate epithelial staining. The patient was initially treated with gatifloxacin drops and frequent lubricating ointment. Given the concern for impending perforation, cyanoacrylate glue with bandage contact lens was applied to both eyes. His best corrected visual acuity remained unchanged in the right eye and improved to 20/30 in the left eye. Upon medical stabilization, anterior lamellar graft was performed in the right eye, with plans for the same treatment in the left eye in the future.ConclusionsAs A1AT is found in the tear film and is believed to play a role in regulating protease activity in the cornea, we hypothesize that this patient's A1AT deficiency exacerbated the progression of corneal ulceration leading to severe descemetocele formation.
Project description:Alpha-1antitrypsin deficiency (AATD) results from the intracellular polymerization and retention of mutant alpha-1antitrypsin (AAT) within the endoplasmic reticulum of hepatocytes. This causes cirrhosis whilst the deficiency of circulating AAT predisposes to early onset emphysema. This is an exciting time for researchers in the field with the development of novel therapies based on understanding the pathobiology of disease. I review here augmentation therapy to prevent the progression of lung disease and a range of approaches to treat the liver disease associated with the accumulation of mutant AAT: modifying proteostasis networks that are activated by Z AAT polymers, stimulating autophagy, small interfering RNA and small molecules to block intracellular polymerization, and stem cell technology to correct the genetic defect that underlies AATD.
Project description:Alpha-1 antitrypsin (AAT) deficiency (AATD) is an under-recognized hereditary disorder and a significant cause of chronic obstructive pulmonary disease (COPD), a disease that contributes to global mortality. AAT is encoded by the SERPINA1 gene, and severe mutation variants of this gene increase the risk of developing COPD. AATD is more frequently screened for in non-Hispanic White populations. However, AATD is also observed in other ethnic groups and very few studies have documented the mutation frequency in these other ethnic populations. Here, we review the current literature on AATD and allele frequency primarily in Black populations and discuss the possible clinical outcomes of low screening rates in a population that experiences poor health outcomes and whether the low frequency of AATD is related to a lack of screening in this population or a truly low frequency of mutations causing AATD. This review also outlines the harmful SERPINA1 variants, the current epidemiology knowledge of AATD, health inequity in Black populations, AATD prevalence in Black populations, the clinical implications of low screening of AATD in this population, and the possible dangers of not diagnosing or treating AATD.
Project description:Alpha 1 antitrypsin deficiency is a hereditary condition characterized by low alpha 1 proteinase inhibitor (also known as alpha 1 antitrypsin [AAT]) serum levels. Reduced levels of AAT allow abnormal degradation of lung tissue, which may ultimately lead to the development of early-onset emphysema. Intravenous infusion of AAT is the only therapeutic option that can be used to maintain levels above the protective threshold. Based on its biochemical efficacy, AAT replacement therapy was approved by the US Food and Drug administration in 1987. However, there remained considerable interest in selecting appropriate outcome measures that could confirm clinical efficacy in a randomized controlled trial setting. Using computed tomography as the primary measure of decline in lung density, the capacity for intravenously administered AAT replacement therapy to slow and modify the course of disease progression was demonstrated for the first time in the Randomized, Placebo-controlled Trial of Augmentation Therapy in Alpha-1 Proteinase Inhibitor Deficiency (RAPID) trial. Following these results, an expert review forum was held at the European Respiratory Society to discuss the findings of the RAPID trial program and how they may change the landscape of alpha 1 antitrypsin emphysema treatment. This review summarizes the results of the RAPID program and the implications for clinical considerations with respect to diagnosis, treatment and management of emphysema due to alpha 1 antitrypsin deficiency.
Project description:BackgroundAlpha-1 antitrypsin deficiency is an inherited disorder that can cause chronic obstructive pulmonary disease (COPD). People who smoke are more seriously affected and have a greater risk of dying from the disease. Therefore, the primary treatment is to help people give up smoking. There are now also preparations available that contain alpha-1 antitrypsin, but it is uncertain what their clinical effect is.ObjectivesTo review the benefits and harms of augmentation therapy with intravenous alpha-1 antitrypsin in patients with alpha-1 antitrypsin deficiency and lung disease.Search methodsWe searched the Cochrane Central Register of Controlled Trials (CENTRAL), PubMed and ClinicalTrials.gov to 25 March 2016.Selection criteriaWe included randomised trials of augmentation therapy with alpha-1 antitrypsin compared with placebo or no treatment.Data collection and analysisThe two review authors independently selected trials, extracted outcome data and assessed the risk of bias.Main resultsWe included three trials (283 participants in the analyses) that ran for two to three years. All participants were ex- or never-smokers and had genetic variants that carried a high risk of developing COPD. Only one trial reported mortality data (one person of 93 died in the treatment group and three of 87 died in the placebo group). There was no information on harms in the oldest trial. Another trial reported serious adverse events in 10 participants in the treatment group and 18 participants in the placebo group. In the most recent trial, serious adverse events occurred in 28 participants in each group. None of the trials reported mean number of lung infections or hospital admissions. In the two trials that reported exacerbations, there were more exacerbations in the treatment group than in the placebo group, but the results of both trials included the possibility of no difference. Quality of life was similar in the two groups. Forced expiratory volume in one second (FEV1) deteriorated more in participants in the treatment group than in the placebo group but the confidence interval (CI) included no difference (standardised mean difference -0.19, 95% CI -0.42 to 0.05; P = 0.12). For carbon monoxide diffusion, the difference was -0.11 mmol/minute/kPa (95% CI -0.35 to 0.12; P = 0.34). Lung density measured by computer tomography (CT) scan deteriorated significantly less in the treatment group than in the placebo group (mean difference (MD) 0.86 g/L, 95% CI 0.31 to 1.42; P = 0.002). Several secondary outcomes were unreported in the largest and most recent trial whose authors had numerous financial conflicts of interest.Authors' conclusionsThis review update added one new study and 143 new participants, but the conclusions remain unchanged. Due to sparse data, we could not arrive at a conclusion about the impact of augmentation therapy on mortality, exacerbations, lung infections, hospital admission and quality of life, and there was uncertainty about possible harms. Therefore, it is our opinion that augmentation therapy with alpha-1 antitrypsin cannot be recommended.
Project description:Alpha-1 antitrypsin (AAT) deficiency, characterized by low plasma levels of the serine protease inhibitor AAT, is associated with emphysema secondary to insufficient protection of the lung from neutrophil proteases. Although AAT augmentation therapy with purified AAT protein is efficacious, it requires weekly to monthly intravenous infusion of AAT purified from pooled human plasma, has the risk of viral contamination and allergic reactions, and is costly. As an alternative, gene therapy offers the advantage of single administration, eliminating the burden of protein infusion, and reduced risks and costs. The focus of this review is to describe the various strategies for AAT gene therapy for the pulmonary manifestations of AAT deficiency and the state of the art in bringing AAT gene therapy to the bedside.
Project description:Alpha-1-antitrypsin deficiency (AATD), also known as alpha1-proteinase inhibitor deficiency, is an autosomal co-dominant condition. The genotypes associated with AATD include null, deficient, and dysfunctional alpha-1-antitrypsin (A1AT) variants, which result in low levels of circulating functional A1AT, unbalanced protease activity, and an increased risk of developing lung emphysema, the leading cause of morbidity in these patients. Furthermore, the most common abnormal genotype, Pi*ZZ may also cause trapping of abnormally folded protein polymers in hepatocytes causing liver dysfunction. A major focus of therapy for patients with lung disease due to AATD is to correct the A1AT deficiency state by augmenting serum levels with intravenous infusions of human plasma-derived A1AT. This strategy has been associated with effective elevations of A1AT levels and function in serum and lung epithelial fluid and observational studies suggest that it may lead to attenuation in lung function decline, particularly in patients with moderate impairment of lung function. In addition, an observational study suggests that augmentation therapy is associated with a reduction of mortality in subjects with AATD and moderate to severe lung impairment. More recent randomized placebo-controlled studies utilizing computer scan densitometry suggest that this therapy attenuates lung tissue loss. Augmentation therapy has a relative paucity of side effects, but it is highly expensive. Therefore, this therapy is recommended for patients with AATD who have a high-risk A1AT genotype with plasma A1AT below protective levels (11 microM) and evidence of obstructive lung disease. In this article, we review the published evidence of A1AT augmentation therapy efficacy, side effects, and safety profile.