Project description:The global COVID-19 pandemic has become the largest public health challenge of recent years. The incidence of COVID-19-related acute hypoxemic respiratory failure (AHRF) occurs in up to 15% of hospitalized patients. Antiviral drugs currently available to clinicians have little to no effect on mortality, length of in-hospital stay, the need for mechanical ventilation, or long-term effects. Inhaled nitric oxide (iNO) administration is a promising new non-standard approach to directly treat viral burden while enhancing oxygenation. Along with its putative antiviral affect in COVID-19 patients, iNO can reduce inflammatory cell-mediated lung injury by inhibiting neutrophil activation, lowering pulmonary vascular resistance and decreasing edema in the alveolar spaces, collectively enhancing ventilation/perfusion matching. This narrative review article presents recent literature on the iNO therapy use for COVID-19 patients. The authors suggest that early administration of the iNO therapy may be a safe and promising approach for the treatment of COVID-19 patients. The authors also discuss unconventional approaches to treatment, continuous versus intermittent high-dose iNO therapy, timing of initiation of therapy (early versus late), and novel delivery systems. Future laboratory and clinical research is required to define the role of iNO as an adjunct therapy against bacterial, viral, and fungal infections.
Project description:BackgroundInhaled NO is a selective pulmonary vasodilator proven to be therapeutic for patients with pulmonary artery hypertension (PAH). The most common NO delivery system in clinical practice is cylinder-based, but unfortunately limited by its high costs, complicated delivery, and the requirement of an extensive supply chain, leaving vast unmet medical needs globally.MethodsTo address the need for rapid, affordable, and safe production of nitric oxide (NO) for in-home inhalation therapy in patients with PAH. We developed a novel portable device to derive NO from a nitrite complex solution with a copper(II)-ligand catalyst, and further examined its effectiveness in a porcine model of PAH. This model was established by using female Bama miniature pig and induced by monocrotaline (MCT) administration.ResultsThis generator could rapidly and safely produce therapeutic NO at concentrations ranging from 0 to 100 parts per million (ppm) with the least disproportionated nitrogen dioxide (NO2) and byproducts. It could effectively alleviate pulmonary arterial pressure (PAP) and pulmonary vascular resistance (PVR) in piglets with PAH, without causing major physiologic disruptions.ConclusionsOur electrochemical NO generator is able to produce the desired NO doses for pulmonary vasodilation in a safe and sustainable way, with low costs, which paves the way for its subsequent clinical trials in the patient with PAH and other common cardiopulmonary conditions with a high disease burden around the world.
Project description:ObjectiveTo compare the efficacy and outcomes with inhaled nitric oxide (iNO) and inhaled epoprostenol (iEPO) in patients with refractory hypoxemia due to COVID-19.DesignRetrospective Cohort Study.SettingSingle health system multicenter academic teaching hospitals.Patients or subjectsAge group of 18-80 years admitted to the medical ICU.InterventionsMechanically ventilated patients with COVID-19 infection, who received either iNO or iEPO between March 1st, 2020, and June 30th, 2020.Measurements and main resultsThe primary outcome was the change in the PaO2/FiO2 (P/F) ratio 1 hour after initiation of pulmonary vasodilator therapy. Secondary outcomes include P/F ratios on days 1-3 after initiation, positive response in P/F ratio (increase of at least 20% in PaO2), total days of treatment, rebound hypoxemia (if there was a drop in oxygen saturation after treatment was stopped), ventilator free days (if any patient was extubated), days in ICU, days to extubation, days to tracheostomy, mortality days after intubation, 30-day survival and mortality. 183 patients were excluded, as they received both iNO and iEPO. Of the remaining 103 patients, 62 received iEPO and 41 received iNO. The severity of ARDS was similar in both groups. Change in P/F ratio at one hour was 116 (70.3) with iNO and 107 (57.6) with iEPO (Mean/SD). Twenty-two (53.7%) patients in the iNO group and 25 (40.3%) in the iEPO group were responders to pulmonary vasodilators n(%)(p = 0.152) (more than 20% increase in partial pressure of oxygen, Pao2), and 18 (43.9%) and 31 (50%) patients in the iNO and iEPO group (p = 0.685), respectively, had rebound hypoxemia. Only 7 patients in the cohort achieved ventilator free days (3 in the iEPO group and 4 in iNO group).ConclusionsWe found no significant difference between iNO and iEPO in terms of change in P/F ratio, duration of mechanical ventilation, ICU, in-hospital mortality in this cohort of mechanically ventilated patients with COVID-19. Larger, prospective studies are necessary to validate these results.
Project description:Novel coronavirus disease by SARS-CoV-2 virus (also known as COVID-19) has emerged as major health concern worldwide. While, there is no specific drugs for treating this infection till date, SARS-CoV-2 had spread to most countries around the globe. Nitric oxide (NO) gas serves as an important signaling molecule having vasodilatory effects as well as anti-microbial properties. Previous studies from the 2004 SARS-CoV infection demonstrated that NO may also help to reduce respiratory tract infection by inactivating viruses and inhibiting their replication cycle and is an effective supportive measure for treating infection in patients with pulmonary complications. NO gas inhalation is being suggested as potential therapy for managing severe acute respiratory distress syndrome in COVID-19 patients. In view of COVID-19 pandemic, several clinical trials are underway to examine the effects of NO inhalation on infected patients. Previously published reports on beneficial effects of endogenous NO and NO inhalation therapy were thoroughly searched to assess the potential of NO therapy for treating COVID-19 patients. Present report summarized the therapeutic importance of NO to reverse pulmonary hypertension, restore normal endothelial activity and produce anti-thrombotic effects. In addition to this, NO also reduces viral infection by inhibiting its replication and entry into the host cell. In absence of vaccine and effective treatment strategies, we suggest that NO inhalation therapy and NO releasing foods/compounds could be considered as an alternative measure to combat COVID-19 infection.
Project description:the current worldwide outbreak of Coronavirus disease 2019 (COVID-19) due to a novel coronavirus (SARS-CoV-2) is seriously threatening the public health. The number of infected patients is continuously increasing and the need for Intensive Care Unit admission ranges from 5 to 26%. The mortality is reported to be around 3.4% with higher values for the elderly and in patients with comorbidities. Moreover, this condition is challenging the healthcare system where the outbreak reached its highest value. To date there is still no available treatment for SARS-CoV-2. Clinical and preclinical evidence suggests that nitric oxide (NO) has a beneficial effect on the coronavirus-mediated acute respiratory syndrome, and this can be related to its viricidal effect. The time from the symptoms' onset to the development of severe respiratory distress is relatively long. We hypothesize that high concentrations of inhaled NO administered during early phases of COVID-19 infection can prevent the progression of the disease. This is a multicenter randomized controlled trial. Spontaneous breathing patients admitted to the hospital for symptomatic COVID-19 infection will be eligible to enter the study. Patients in the treatment group will receive inhaled NO at high doses (140-180 parts per million) for 30 minutes, 2 sessions every day for 14 days in addition to the hospital care. Patient in the control group will receive only hospital care. The primary outcome is the percentage of patients requiring endotracheal intubation due to the progression of the disease in the first 28 days from enrollment in the study. Secondary outcomes include mortality at 28 days, proportion of negative test for SARS-CoV-2 at 7 days and time to clinical recovery. The trial protocol has been approved at the Investigation Review Boards of Xijing Hospital (Xi'an, China) and The Partners Human Research Committee of Massachusetts General Hospital (Boston, USA) is pending. Recruitment is expected to start in March 2020. Results of this study will be published in scientific journals, presented at scientific meetings, and on related website or media in fighting this widespread contagious disease.
Project description:BackgroundIn COVID-19 patients with severe acute respiratory distress syndrome (ARDS), the relatively preserved respiratory system compliance despite severe hypoxemia, with specific pulmonary vascular dysfunction, suggests a possible hemodynamic mechanism for VA/Q mismatch, as hypoxic vasoconstriction alteration. This study aimed to evaluate the capacity of inhaled nitric oxide (iNO)-almitrine combination to restore oxygenation in severe COVID-19 ARDS (C-ARDS) patients.MethodsWe conducted a monocentric preliminary pilot study in intubated patients with severe C-ARDS. Respiratory mechanics was assessed after a prone session. Then, patients received iNO (10 ppm) alone and in association with almitrine (10 μg/kg/min) during 30 min in each step. Echocardiographic and blood gases measurements were performed at baseline, during iNO alone, and iNO-almitrine combination. The primary endpoint was the variation of oxygenation (PaO2/FiO2 ratio).ResultsTen severe C-ARDS patients were assessed (7 males and 3 females), with a median age of 60 [52-72] years. Combination of iNO and almitrine outperformed iNO alone for oxygenation improvement. The median of PaO2/FiO2 ratio varied from 102 [89-134] mmHg at baseline, to 124 [108-146] mmHg after iNO (p = 0.13) and 180 [132-206] mmHg after iNO and almitrine (p < 0.01). We found no correlation between the increase in oxygenation caused by iNO-almitrine combination and that caused by proning.ConclusionIn this pilot study of severe C-ARDS patients, iNO-almitrine combination was associated with rapid and significant improvement of oxygenation. These findings highlight the role of pulmonary vascular function in COVID-19 pathophysiology.
Project description:The nasal cavity and turbinates play important physiological functions by filtering, warming and humidifying inhaled air. Paranasal sinuses continually produce nitric oxide (NO), a reactive oxygen species that diffuses to the bronchi and lungs to produce bronchodilatory and vasodilatory effects. Studies indicate that NO may also help to reduce respiratory tract infection by inactivating viruses and inhibiting their replication in epithelial cells. In view of the pandemic caused by the novel coronavirus (SARS-CoV-2), clinical trials have been designed to examine the effects of inhaled nitric oxide in COVID-19 subjects. We discuss here additional lifestyle factors such as mouth breathing which may affect the antiviral response against SARS-CoV-2 by bypassing the filtering effect of the nose and by decreasing NO levels in the airways. Simple devices that promote nasal breathing during sleep may help prevent the common cold, suggesting potential benefits against coronavirus infection. In the absence of effective treatments against COVID-19, the alternative strategies proposed here should be considered and studied in more detail.
Project description:In the prevailing covid times, scientific community is busy in developing vaccine against COVID-19. Under such fascination this article describes the possible role of nitric oxide (NO) releasers in aiding the immune system of a human body against this dreadful pandemic disease. Despite some prodrug antiviral compounds are in practice to recover the patients suffering from covid-19, however, co-morbidity deaths are highest among the total deaths happened so far. This concurrence of a number of diseases in a patient along with this viral infection is indicative of the poor immunity. Literature background supports the use of NO as immunity boosting agent and hence, the nitric oxide releasing compounds could act as lucrative in this context. Some dietary suggestions of NO-containing food items have also been introduced in this article. Also, the profound effect of NO in relieving symptomatic severity of covid-19 has been opined in this work. Communicated by Ramaswamy H. Sarma.
Project description:Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is manifested by an acute respiratory distress syndrome (ARDS) with intense inflammation and endothelial dysfunction leading to particularly severe hypoxemia. We hypothesized that an impaired hypoxic pulmonary vasoconstriction aggravates hypoxemia. The objective of the study was to test the effect of two pulmonary vasoactive drugs on patient oxygenation. Methods: Observational, single-center, open-label study in one intensive care unit (ICU) of the Paris area, realized in April 2020. Eligible patients had coronavirus disease 2019 (COVID-19) and moderate to severe ARDS [arterial partial pressure of oxygen/fraction of inspired oxygen (PaO2/FiO2) <200 mmHg] despite conventional protective ventilation. Exclusion criteria included pulmonary artery hypertension defined by a pulmonary artery systolic pressure (PAPs) >45 mmHg. The assessment of oxygenation was based on PaO2/FiO2 at (1) baseline, then after (2) 30 min of inhaled nitric oxide (iNO) 10 ppm alone, then (3) 30 min combination of iNO + almitrine infusion 8 μg/kg/min, then (4) 30 min of almitrine infusion alone. Results: Among 20 patients requiring mechanical ventilation during the study period, 12 met the inclusion criteria. Baseline PaO2/FiO2 was 146 ± 48 mmHg. When iNO was combined with almitrine, PaO2/FiO2 rose to 255 ± 90 mmHg (+80 ± 49%, p = 0.005), also after almitrine alone: 238 ± 98 mmHg (+67 ± 75%, p = 0.02), but not after iNO alone: 185 ± 73 mmHg (+30 ± 5%, p = 0.49). No adverse events related to almitrine infusion or iNO was observed. Conclusion: Combining iNO and infused almitrine improved the short-term oxygenation in patients with COVID-19-related ARDS. This combination may be of interest when first-line therapies fail to restore adequate oxygenation. These findings argue for an impaired pulmonary hypoxic vasoconstriction in these patients.