The effects of motor modularity on performance, learning and generalizability in upper-extremity reaching: a computational analysis.
Ontology highlight
ABSTRACT: It has been hypothesized that the central nervous system simplifies the production of movement by limiting motor commands to a small set of modules known as muscle synergies. Recently, investigators have questioned whether a low-dimensional controller can produce the rich and flexible behaviours seen in everyday movements. To study this issue, we implemented muscle synergies in a biomechanically realistic model of the human upper extremity and performed computational experiments to determine whether synergies introduced task performance deficits, facilitated the learning of movements, and generalized to different movements. We derived sets of synergies from the muscle excitations our dynamic optimizations computed for a nominal task (reaching in a plane). Then we compared the performance and learning rates of a controller that activated all muscles independently to controllers that activated the synergies derived from the nominal reaching task. We found that a controller based on synergies had errors within 1 cm of a full-dimensional controller and achieved faster learning rates (as estimated from computational time to converge). The synergy-based controllers could also accomplish new tasks-such as reaching to targets on a higher or lower plane, and starting from alternative initial poses-with average errors similar to a full-dimensional controller.
SUBMITTER: Al Borno M
PROVIDER: S-EPMC7328389 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA