Unknown

Dataset Information

0

MiR-10a overexpression aggravates renal ischemia-reperfusion injury associated with decreased PIK3CA expression.


ABSTRACT:

Background

To investigate the effect of miR-10a on renal tissues with ischemia reperfusion (I/R) injury in rats and to explore the underlying mechanisms of the effect of miR-10a on hypoxia-reoxygenation in HK-2 cells.

Methods

MiR-10a level was measured in the renal tissues of rats with I/R rats using RT-PCR. In order to research the role of miR-10a in renal tissues, an miR-10 agonist and an miR-10a antagonist were used to treat I/R-injured rats. Levels of serum creatinine and blood urea nitrogen, renal histopathology, and levels of cell apoptosis were analyzed separately in renal tissues from the rats. Phosphatidylinositol 3-kinase (PI3K)/Akt pathway related proteins were measured by Western blotting. In addition, HK-2 cells were cultured in order to study the mechanism of action of miR-10a in the hypoxia-reoxygenation model being studied. Finally, the dual luciferase reporter gene assay was used to confirm that the PI3K p100 catalytic subunit α (PIK3CA) gene was targeted by miR-10a.

Results

After renal I/R injury in rats, miR-10a expression increased significantly (p < 0.05). Injection of miR-10a agonist significantly aggravated the renal injury and raised the level of cell apoptosis in the renal tissues of I/R-injured rats (p < 0.05). However, administration of miR-10a antagonist led to obvious improvement of the renal injury, decreased renal cell apoptosis, and inhibited PI3K/Akt pathway activity (p < 0.05). In in vitro experiments, the negative relationship between PIK3CA and miR-10a levels was confirmed. Furthermore, overexpression of miR-10a significantly decreased the proliferation of HK-2 cells, and increased cell apoptosis via up-regulation of the PI3K/Akt pathway (p < 0.05).

Conclusion

The aggravation of renal I/R injury by miR-10a was associated with a decrease in the activity of PIK3CA/PI3K/Akt pathway.

SUBMITTER: Xu D 

PROVIDER: S-EPMC7329557 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

miR-10a overexpression aggravates renal ischemia-reperfusion injury associated with decreased PIK3CA expression.

Xu Dongsheng D   Li Wenjun W   Zhang Tao T   Wang Gang G  

BMC nephrology 20200701 1


<h4>Background</h4>To investigate the effect of miR-10a on renal tissues with ischemia reperfusion (I/R) injury in rats and to explore the underlying mechanisms of the effect of miR-10a on hypoxia-reoxygenation in HK-2 cells.<h4>Methods</h4>MiR-10a level was measured in the renal tissues of rats with I/R rats using RT-PCR. In order to research the role of miR-10a in renal tissues, an miR-10 agonist and an miR-10a antagonist were used to treat I/R-injured rats. Levels of serum creatinine and bloo  ...[more]

Similar Datasets

| S-EPMC10392062 | biostudies-literature
| S-EPMC6933315 | biostudies-literature
| S-EPMC8463569 | biostudies-literature
| S-EPMC10244188 | biostudies-literature
| S-EPMC11912734 | biostudies-literature
| S-EPMC8698829 | biostudies-literature
| S-EPMC8414249 | biostudies-literature
| S-EPMC10412692 | biostudies-literature
| S-EPMC2928523 | biostudies-literature
| S-EPMC7495230 | biostudies-literature