Project description:ObjectiveIntroduce novel methods and materials to limit microdroplet spread when performing transnasal aerosol generating procedures in the COVID-19 era.MethodsPrototypes of a negative pressure face shield (NPFS) were tested then used clinically to create a suction-clearing negative pressure microenvironment with controlled access to the nose and mouth. Air pressure measurements within prototypes were followed by prospective evaluation of 30 consecutive patients treated with the device assessed through questionnaires and monitoring oximetry.ResultsThe NPFS is a transparent acrylic barrier with two anterior instrumentation ports and a side port to which continuous suction is applied. It is positioned on a stand and employs a disposable antimicrobial wrap to secure an enclosure around the head. This assembly was successfully used to complete transnasal laryngoscopy in all 30 patients studied. Tolerance of the design was excellent, with postprocedure questionnaire identifying no shortness of breath (27/30), no claustrophobia (27/30), no pain (29/30), and no significant changes in pulse oximetry.ConclusionDiagnostic laryngoscopy was successfully performed in a negative pressure microenvironment created to limit dispersion of aerosols. Further application of the NPFS device is targeted for use with transnasal laryngeal laser and biopsy procedures to be followed by additional modification to enable intranasal and intraoral procedures in a similar protected environment.Level of evidenceLevel 2b (Cohort Study).
Project description:The coronavirus SARS-CoV-2 (COVID19) pandemic has pushed health workers to find creative solutions to a global shortage of personal protection equipment (PPE). 3D-printing technology is having an essential role during the pandemic providing solutions for this problem, for instance, modifying full-face snorkel masks or creating low-cost face shields to use as PPE (Ishack and Lipner, 2020 [1]). Otolaryngologists are at increased occupational risk to COVID19 infection due to the exposure to respiratory droplets and aerosols, especially during the routine nose and mouth examinations where coughing and sneezing happen regularly (Rna et al., 2017 [2]; Tysome and Bhutta, 2020 [3]). The use of a headlight is essential during these examinations. However, to our knowledge, none of the commercially available or 3D-printable face shields are compatible with a headlight. Hence, using a face shield and a headlight at the same time can be very uncomfortable and sometimes impossible. To solve this problem, we have designed a 3D-printable adapter for medical headlights, which can hold a transparent sheet to create a face shield as an effective barrier protection that can be used comfortably with the headlight. The adapter can be printed in different materials with the most commonly used nowadays being the cost-efficient PLA (Polylactic Acid) used for this prototype. The resulting piece weighs only 7 g and has an estimated cost of $0.15 USD. The transparent sheets, typically made from polyester and used for laser printing, can be purchased in any office material store with a standard price of 0.4 USD per unit. After use, the transparent sheet can be easily removed. We trialed the adapter in 7 different headlights. All of these headlights accommodated the printed blocks extremely well. The headlights were used in many different settings, including the ENT clinic, the operating room, the emergency room, the ENT ward and the COVID19 intensive care unit (ICU) for a two weeks period. All doctors using the headlight felt they were fully protected from respiratory droplets, blood, sputum and other fluids. The face shield with the headlight has been found very useful for treating epistaxis, changing tracheostomy cannulas and during routine nasal and oral examinations. The headlight face shield adapter was designed to solve a specific problem among the ENT community; however other specialist can find it useful as well. Nonetheless, manufacturers should take care of specifics problems like this and provide commercially available products to protect the ENT workforce in this new era.
Project description:Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Till now, the total number of affected patients are 9,073,969 with 471,199 deaths and 3,747,128 currently infected active cases. Major concern is due to the droplets and aerosols of SARS CoV 2 causing the rapid spread and transmission. Since last 3 months we are using the indigenous face shields for our health care workers which costs only 0.13 USD per shield. Now we propose the use of this same shield for the general public to reduce the transmission of SARS CoV2.
Project description:This study assessed the disinfection using 70% ethanol; H2O2-quaternary ammonium salt mixture; 0.1% sodium hypochlorite and autoclaving of four 3D-printed face shields with different designs, visor materials; and visor thickness (0.5-0.75 mm). We also investigated their clinical suitability by applying a questionnaire to health workers (HW) who used them. Each type of disinfection was done 40 times on each type of mask without physical damage. In contrast, autoclaving led to appreciable damage.
Project description:BackgroundFace shields were widely used in 2020-2021 as facial personal protective equipment (PPE). Laboratory evidence about how protective face shields might be and whether real world user priorities and usage habits conflicted with best practice for maximum possible protection was lacking - especially in limited resource settings.MethodsRelative protective potential of 13 face shield designs were tested in a controlled laboratory setting. Community and health care workers were surveyed in middle income country cities (Brazil and Nigeria) about their preferences and perspectives on face shields as facial PPE. Priorities about facial PPE held by survey participants were compared with the implications of the laboratory-generated test results.ResultsNo face shield tested totally eliminated exposure. Head orientation and design features influenced the level of protection. Over 600 individuals were interviewed in Brazil and Nigeria (including 240 health care workers) in March-April 2021. Respondents commented on what influenced their preferred forms of facial PPE, how they tended to clean face shields, and their priorities in choosing a face cover product. Surveyed health care workers commonly bought personal protection equipment for use at work.ConclusionsAll face shields provided some protection but none gave high levels of protection against external droplet contamination. Respondents wanted facial PPE that considered good communication, secure fixture, good visibility, comfort, fashion, and has validated protectiveness.
Project description:Background and aimDuring the Coronavirus Disease 2019 pandemic, esophagogastroduodenoscopy (EGD) has been recognized as an aerosol-generating procedure. This study aimed to systematically compare the degree of face shield contamination between endoscopists who performed EGD on patients lying in the left lateral decubitus (LL) and prone positions.MethodsThis is a randomized trial in patients scheduled for EGD between April and June 2020. Eligible 212 patients were randomized with 1:1 allocation. Rapid adenosine triphosphate test was used to determine contamination level using relative light units of greater than 200 as a cutoff value. All eligible patients were randomized to lie in either the LL or prone position during EGD. The primary outcome was the rate of contamination on the endoscopist's face shield.ResultsThe majority of patients were female (63%), with a mean age of 60 ± 13 years. Baseline characteristics were comparable between the two groups. There was no face shield contamination after EGD in either group. The number of coughs in the LL group was higher than the prone group (1.38 ± 1.8 vs 0.89 ± 1.4, P = 0.03). The mean differences in relative light units on the face shield before and after EGD in the LL and prone groups were 9.9 ± 20.9 and 4.1 ± 6 (P = 0.008), respectively.ConclusionAs measured by the adenosine triphosphate test, performing diagnostic EGD does not lead to contamination on the face shield of the endoscopist. However, placing patients in the prone position may further mitigate the risk.
Project description:BackgroundEndoscopy services have had to rapidly adapt their working practices in response to COVID-19. As recovery of endoscopy services proceeds, our workforce faces numerous challenges that can impair effective teamworking. We designed and developed a novel toolkit to support teamworking in endoscopy during the pandemic.MethodsA human factors model was developed to understand the impact of COVID-19 on endoscopy teams. From this, we identified a set of key teamworking goals, which informed the development of a toolkit to support several team processes. The toolkit was refined following expert input and refinement over a 6-week period.ResultsThe toolkit consists of four cognitive aids that can be used to support team huddles, briefings, and debriefs, alongside techniques to optimize endoscopic nontechnical skills across the patient-procedure pathway. We describe the processes that local endoscopy units can employ to implement this toolkit.ConclusionA toolkit of cognitive aids, based on human factors principles, may be useful in supporting teams, helping them adapt to working safely in the era of COVID-19.